Skip to main content

Advertisement

Log in

Prevalence of Trypanosoma sp. in cattle from Tanzania estimated by conventional PCR and loop-mediated isothermal amplification (LAMP)

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

This study compared the prevalence of trypanosome infections estimated by PFR-loop-mediated isothermal amplification (LAMP) with conventional polymerase chain reaction (PCR) tests. One hundred forty eight cattle blood samples were collected from Robanda village, Mara region, Tanzania in April 2008. In conventional PCR, four sets of primers, specific for the detection of Trypanosoma sp., Trypanosoma brucei rhodesiense, Trypanosoma vivax, and Trypanozoon, as well as a modified LAMP were used. Conventional PCR detected no infection or up to 8, 1, and 3 infections with Trypanosoma congolense savannah, Trypanozoon, and T. vivax, respectively, whereas LAMP detected additional 44 Trypanozoon positive cases. Our results clearly indicate that the prevalence of Trypanozoon spp. in cattle in Robanda village estimated by PFR-LAMP (30.4%) was significantly higher than the estimates by PCR assays (0.6–2%). As such, future studies should target epidemiological surveys of Trypanozoon and T. brucei rhodesiense infections in possible reservoir animals by LAMP to further elucidate the actual prevalence of these parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • AbouLaila M, Yokoyama N, Igarashi I (2010) Development and evaluation of two nested PCR assays for the detection of Babesia bovis from cattle blood. Vet Parasitol 172:65–70

    Article  PubMed  CAS  Google Scholar 

  • Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K (1994) Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci 39:362–372

    PubMed  CAS  Google Scholar 

  • Al-Soud WA, Jonsson LJ, Radstrom P (2000) Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol 38:345–350

    PubMed  CAS  Google Scholar 

  • Belec L, Authier J, Eliezer-Vanerot MC, Piedouillet C, Mohamed AS, Gherardi RK (1998) Myoglobin as a polymerase chain reaction (PCR) inhibitor: a limitation for PCR from skeletal muscle tissue avoided by the use of Thermus thermophilus polymerase. Muscle Nerve 21:1064–1067

    Article  PubMed  CAS  Google Scholar 

  • Cortez AP, Ventura RM, Rodrigues AC, Batista JS, Paiva F, Anez N, Machado RZ, Gibson WC, Teixeira MM (2006) The taxonomic and phylogenetic relationships of Trypanosoma vivax from South America and Africa. Parasitology 133:159–169

    Article  PubMed  CAS  Google Scholar 

  • Cortez AP, Rodrigues AC, Garcia HA, Neves L, Batista JS, Bengaly Z, Paiva F, Teixeira MM (2009) Cathepsin L-like genes of Trypanosoma vivax from Africa and South America-characterization, relationships and diagnostic implications. Mol Cell Probes 23:44–51

    Article  PubMed  CAS  Google Scholar 

  • Desquesnes M, Davila AM (2002) Applications of PCR-based tools for detection and identification of animal trypanosomes: a review and perspectives. Vet Parasitol 109:213–231

    Article  PubMed  CAS  Google Scholar 

  • Desquesnes M, McLaughlin G, Zoungrana A, Davila AM (2001) Detection and identification of Trypanosoma of African livestock through a single PCR based on internal transcribed spacer 1 of rDNA. Int J Parasitol 31:610–614

    Article  PubMed  CAS  Google Scholar 

  • Enyaru JC, Matovu E, Nerima B, Akol M, Sebikali C (2006) Detection of T. b. rhodesiense trypanosomes in humans and domestic animals in south east Uganda by amplification of serum resistance-associated gene. Ann N Y Acad Sci 1081:311–319

    Article  PubMed  CAS  Google Scholar 

  • Iseki H, Kawai S, Takahashi N, Hirai M, Tanabe K, Yokoyama N, Igarashi I (2010) Evaluation of a loop-mediated isothermal amplification method as a tool for diagnosis of infection by the zoonotic simian malaria parasite Plasmodium knowlesi. J Clin Microbiol 48:2509–2514

    Article  PubMed  CAS  Google Scholar 

  • Jing Z, Magona JW, Sakurai T, Thekisoe OM, Otim CP, Sugimoto C, Inoue N (2009) A field study to estimate the prevalence of bovine African Trypanosomosis in Butaleja District, Uganda. J Vet Med Sci 71:525–527

    Article  PubMed  Google Scholar 

  • Kaare MT, Picozzi K, Mlengeya T, Fevre EM, Mellau LS, Mtambo MM, Cleaveland S, Welburn SC (2007) Sleeping sickness–a re-emerging disease in the Serengeti? Travel Med Infect Dis 5:117–124

    Article  PubMed  Google Scholar 

  • Kuboki N, Inoue N, Sakurai T, Di Cello F, Grab DJ, Suzuki H, Sugimoto C, Igarashi I (2003) Loop-mediated isothermal amplification for detection of African trypanosomes. J Clin Microbiol 41:5517–5524

    Article  PubMed  CAS  Google Scholar 

  • Lanham SM, Godfrey DG (1970) Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol 28:521–534

    Article  PubMed  CAS  Google Scholar 

  • Malele II, Kinung'hi SM, Nyingilili HS, Matemba LE, Sahani JK, Mlengeya TD, Wambura M, Kibona SN (2007) Glossina dynamics in and around the sleeping sickness endemic Serengeti ecosystem of northwestern Tanzania. J Vector Ecol 32:263–268

    Article  PubMed  CAS  Google Scholar 

  • Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16:223–229

    Article  PubMed  CAS  Google Scholar 

  • Njiru ZK, Mikosza AS, Armstrong T, Enyaru JC, Ndung'u JM, Thompson AR (2008) Loop-mediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis 2:e147

    Article  PubMed  Google Scholar 

  • Radwanska M, Chamekh M, Vanhamme L, Claes F, Magez S, Magnus E, de Baetselier P, Büscher P, Pays E (2002) The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. Am J Trop Med Hyg 67:684–690

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Preparation and analysis of eukaryotic genomic DNA. In: Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 61–664

    Google Scholar 

  • Solano P, Jamonneau V, N'Guessan P, N'Dri L, Dje NN, Miezan TW, Lejon V, Büscher P, Garcia A (2002) Comparison of different DNA preparation protocols for PCR diagnosis of Human African Trypanosomosis in Cote d'Ivoire. Acta Trop 82:349–356

    Article  PubMed  CAS  Google Scholar 

  • Stevens JR, Brisse S (2004) Systematics of trypanosomes of medical and veterinary importance. In: Maudlin I, Holmes PH, Miles MA (eds) The trypanosomiases. CABI, Oxfordshire, pp 1–24

    Chapter  Google Scholar 

  • Thekisoe OM, Kuboki N, Nambota A, Fujisaki K, Sugimoto C, Igarashi I, Yasuda J, Inoue N (2007) Species-specific loop-mediated isothermal amplification (LAMP) for diagnosis of trypanosomosis. Acta Trop 102:182–189

    Article  PubMed  CAS  Google Scholar 

  • Thekisoe OM, Bazie RS, Coronel-Servian AM, Sugimoto C, Kawazu S, Inoue N (2009) Stability of loop-mediated isothermal amplification (LAMP) reagents and its amplification efficiency on crude trypanosome DNA templates. J Vet Med Sci 71:471–475

    Article  PubMed  CAS  Google Scholar 

  • Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882

    Article  PubMed  CAS  Google Scholar 

  • Wastling SL, Picozzi K, Kakembo AS, Welburn SC (2010) LAMP for human African trypanosomiasis: a comparative study of detection formats. PLoS Negl Trop Dis 4:e865

    Article  PubMed  Google Scholar 

  • Welburn SC, Picozzi K, Fevre EM, Coleman PG, Odiit M, Carrington M, Maudlin I (2001) Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene. Lancet 358:2017–2019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the logistic support provided by the Directors for TTRI-Tanga and Yuka Suzuki, HUCZCZ-Lusaka, Zambia during this study. We also thank the Tanzania National Park Authority (TANAPA) and particularly the staff of Serengeti National Park Veterinary Laboratory for providing space and assistance. Our sincere gratitude also goes to Mr. Hamisi Nyingilili and Mr. Lupakisyo Kapange for their help of sampling. The authors thank all the farmers kindly allowing our sampling from their cows. This study was supported by a Grant-in-Aid for scientific Research from JSPS to SK, CS, and NI, and partially supported by GCOE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laohasinnarong, D., Thekisoe, O.M.M., Malele, I. et al. Prevalence of Trypanosoma sp. in cattle from Tanzania estimated by conventional PCR and loop-mediated isothermal amplification (LAMP). Parasitol Res 109, 1735–1739 (2011). https://doi.org/10.1007/s00436-011-2513-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2513-2

Keywords

Navigation