Skip to main content

Advertisement

Log in

Identification and characterization of microRNAs in Trichinella spiralis by comparison with Brugia malayi and Caenorhabditis elegans

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Trichinella spiralis is an important zoonotic nematode causing trichinellosis which is associated with human diseases such as malaise, anorexia, nausea, vomiting, abdominal pain, fever, diarrhea, and constipation. microRNAs (miRNAs) are endogenous small non-coding RNAs that play important roles in the regulation of gene expression. The objective of the present study was to examine the miRNA expression profile of the larvae of T. spiralis by Solexa deep sequencing combined with stem-loop real-time polymerase chain reaction (PCR) analysis. T. spiralis larvae were collected from the skeletal muscle of naturally infected pigs in Henan province, China, by artificial digestion using pepsin. The specific identity of the T. spiralis larvae was confirmed by PCR amplification and subsequent sequence analysis of the internal transcribed spacer of ribosomal DNA. A total of 17,851,693 reads with 2,773,254 unique reads were obtained. Eleven conserved miRNAs from 115 unique xsmall RNAs (sRNAs) and 12 conserved miRNAs from 130 unique sRNAs were found by BLAST analysis against the known miRNAs of Caenorhabditis elegans (ftp://ftp.ncbi.nih.gov/genomes/Caenorhabditis_elegans) and Brugia malayi dataset (http://www.ncbi.nlm.nih.gov/genomeprj?Db=genomeprj&cmd=ShowDetailView&TermToSearch=9549) in miRBase, respectively. One novel miRNA with 12 precursors were identified and certified using the reference genome of B. malayi, while no novel miRNA was found when using the reference genome of C. elegans. Nucleotide bias analysis showed that the uracil was the prominent nucleotide, particularly at the 1st, 6th, 18th, and 23th positions, which were almost at the beginning, middle, and the end of the conserved miRNAs. The identification and characterization of T. spiralis miRNAs provides a new resource to study regulation of genes and their networks in T. spiralis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5:337–350

    Article  PubMed  CAS  Google Scholar 

  • Atterby H, Learmount J, Conyers C, Zimmer I, Boonham N, Taylor M (2009) Development of a real-time PCR assay for the detection of Trichinella spiralis in situ. Vet Parasitol 161:92–98

    Article  PubMed  CAS  Google Scholar 

  • Barennes H, Sayasone S, Odermatt P, De Bruyne A, Hongsakhone S, Newton PN, Vongphrachanh P, Martinez-Aussel B, Strobel M, Dupouy-Camet J (2008) A major trichinellosis outbreak suggesting a high endemicity of Trichinella infection in northern Laos. Am J Trop Med Hyg 78:40–44

    PubMed  Google Scholar 

  • Bartel DP (2004) microRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    Article  PubMed  CAS  Google Scholar 

  • Bruschi F, Murrell KD (2002) New aspects of human trichinellosis: the impact of new Trichinella species. Postgrad Med J 78:15–22

    Article  PubMed  CAS  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  PubMed  CAS  Google Scholar 

  • Chang TC, Mendell JT (2007) microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 8:215–239

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  • Crum ED, Despommier DD, McGregor DD (1977) Immunity to Trichinella spiralis I: transfer of resistance by two classes of lymphocytes. Immunology 33:787–795

    PubMed  CAS  Google Scholar 

  • Delić D, Dkhil M, Al-Quraishy S, Wunderlich F (2011) Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria. Parasitol Res (in press)

  • Hussain M, Taft RJ, Asgari S (2008) An insect virus-encoded microRNA regulates viral replication. J Virol 82:9164–9170

    Article  PubMed  CAS  Google Scholar 

  • Kusolsuk T, Kamonrattanakun S, Wesanonthawech A, Dekumyoy P, Thaenkham U, Yoonuan T, Nuamtanong S, Sa-Nguankiat S, Pubampen S, Maipanich W, Panitchakit J, Marucci G, Pozio E, Waikagul J (2010) The second outbreak of trichinellosis caused by Trichinella papuae in Thailand. Trans R Soc Trop Med Hyg 104:433–437

    Article  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  • Li T, He S, Zhao H, Zhao G, Zhu XQ (2010) Major trends in human parasitic diseases in China. Trends Parasitol 26:264–270

    Article  PubMed  Google Scholar 

  • Liu M, Boireau P (2002) Trichinellosis in China: epidemiology and control. Trends Parasitol 18:553–556

    Article  PubMed  Google Scholar 

  • Liu Q, Tuo W, Gao H, Zhu XQ (2010) microRNAs of parasites: current status and future perspectives. Parasitol Res 107:501–507

    Article  PubMed  Google Scholar 

  • Lo YC, Hung CC, Lai CS, Wu Z, Nagano I, Maeda T, Takahashi Y, Chiu CH, Shyong Jiang DD (2009) Human trichinosis after consumption of soft-shelled turtles, Taiwan. Emerg Infect Dis 15:2056–2058

    Article  PubMed  Google Scholar 

  • Murrell KD, Pozio E (2000) Trichinellosis: the zoonosis that won’t go quietly. Int J Parasitol 30:1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Ozkoc S, Tuncay S, Delibas SB, Akisu C (2009) In vitro effects of resveratrol on Trichinella spiralis. Parasitol Res 105:139–143

    Article  Google Scholar 

  • Poole CB, Davis PJ, Jin J, McReynolds LA (2010) Cloning and bioinformatic identification of small RNAs in the filarial nematode, Brugia malayi. Mol Biochem Parasitol 169:87–94

    Article  PubMed  CAS  Google Scholar 

  • Pozio E (2001) New patterns of Trichinella infection. Vet Parasitol 98:133–148

    Article  PubMed  CAS  Google Scholar 

  • Pozio E, Murrell KD (2006) Systematics and epidemiology of Trichinella. Adv Parasitol 63:367–439

    Article  PubMed  Google Scholar 

  • Pozio E (2007) World distribution of Trichinella spp. infections in animals and humans. Vet Parasitol 149:3–21

    Article  PubMed  Google Scholar 

  • Ribicich M, Gamble HR, Bolpe J, Scialfa E, Krivokapich S, Cardillo N, Betti A, Holzmann ML, Pasqualetti M, Fariña F, Rosa A (2010) Trichinella infection in wild animals from endemic regions of Argentina. Parasitol Res 107:377–380

    Article  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  • Shimoni Z, Klein Z, Weiner P, Assous MV, Froom P (2007) The use of prednisone in the treatment of trichinellosis. Isr Med Assoc J 9:537–539

    PubMed  Google Scholar 

  • Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    Article  PubMed  CAS  Google Scholar 

  • Vorou RM, Papavassiliou VG, Tsiodras S (2007) Emerging zoonoses and vector-borne infections affecting humans in Europe. Epidemiol Infect 135:1231–1247

    Article  PubMed  CAS  Google Scholar 

  • Xu MJ, Liu Q, Nisbet AJ, Cai XQ, Yan C, Lin RQ, Yuan ZG, Song HQ, He XH, Zhu XQ (2010) Identification and characterization of microRNAs in Clonorchis sinensis of human health significance. BMC Genomics 11:521

    Article  PubMed  Google Scholar 

  • Xue LJ, Zhang JJ, Xue HW (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res 37:916–930

    Article  PubMed  CAS  Google Scholar 

  • Xue X, Sun J, Zhang Q, Wang Z, Huang Y, Pan W (2008) Identification and characterization of novel microRNAs from Schistosoma japonicum. PLoS ONE 3:e4034

    Article  PubMed  Google Scholar 

  • Yang Y, Jian W, Qin W (2010) Molecular cloning and phylogenetic analysis of small GTPase protein Tscdc42 from Trichinella spiralis. Parasitol Res 106:801–808

    Article  PubMed  Google Scholar 

  • Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Farwell MA (2008) microRNAs: a new emerging class of players for disease diagnostics and gene therapy. J Cell Mol Med 12:3–21

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Stellwag EJ, Pan X (2009) Large-scale genome analysis reveals unique features of microRNAs. Gene 443:100–109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Program for National S & T Major Program (grant no. 2008ZX10004-011, 2009ZX10004-302, 2009ZX10004-201), National Key Technology R & D Program (grant no. 2008BAI56B03), and the State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences. The experiments comply with the current laws of the country in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Q. Zhu or J. X. Chen.

Additional information

M. X. Chen and L. Ai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M.X., Ai, L., Xu, M.J. et al. Identification and characterization of microRNAs in Trichinella spiralis by comparison with Brugia malayi and Caenorhabditis elegans . Parasitol Res 109, 553–558 (2011). https://doi.org/10.1007/s00436-011-2283-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2283-x

Keywords

Navigation