Skip to main content
Log in

Occurrence and genetic characterization of Giardia duodenalis from captive nonhuman primates by multi-locus sequence analysis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Giardia is the most common enteric protozoan that can be pathogenic to both humans and animals. Transmission can be direct through the faecal–oral route, or through ingestion of contaminated water or food. Genetic characterization of Giardia duodenalis isolates has demonstrated the existence of seven groups (assemblages A to G) which differ in their host distribution. Assemblages A and B are present in humans and other primates, dogs, cats, rodents, and other species of wild mammals, but the role of the different host animals in the epidemiology of human infection remains unclear. With this preliminary data, we can infer that nonhuman primates (NHP) might be a potential reservoir for zoonotic transmission. This research paper discusses the presence of Giardia in nonhuman primates housed in two Spanish zoological gardens (located in Valencia and Madrid). Twenty faecal samples obtained from 16 different species of NHP were studied; 70% were positives to Giardia, and genetic analyses were performed by sequencing of four genes (SSrRNA, glutamate dehydrogenase, triose phosphate isomerase, and beta-giardin). The assemblage A was the most frequent (63.4%) in the species studied. A sequence from a red ruffed lemur (corresponding to genotype AI) was obtained, and this is the first reported sequence of a gdh gene obtained from this species. The multi-locus sequence analysis was also performed on the samples positive to nested PCR belonging to assemblage B. After amplification using the GDHeF, GDHiF, and GDHiR gdh primers; AL3543, AL3546, AL3544, and AL3545 tpi primers; G7, G759, GBF, and GBR bg primers, amplicons of 432, 500, and 511 bp respectively were obtained. Amplification products were sequenced and the sequence and phylogenetic analyses showed that genotype IV like was the most frequent in the samples belonging to this assemblage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe N, Tanoue T, Noguchi E, Ohta G, Sakai H (2010) Molecular characterization of Giardia duodenalis isolates from domestic ferrets. Parasitol Res 106:733–736

    Article  PubMed  Google Scholar 

  • Al-Mohammed HI (2010) Genotypes of Giardia intestinalis clinical isolates of gastrointestinal symptomatic Saudi children. Parasitol Res. doi:doi:10.1007/s00436-010-2033-5

    PubMed  Google Scholar 

  • Appelbee AJ, Frederick LM, Heitman TL, Olson ME (2003) Prevalence and genotyping of Giardia duodenalis from beef calves in Alberta, Canada. Vet Parasitol 112:289–294

    Article  PubMed  CAS  Google Scholar 

  • Beck R, Sprong H, Bata I, Lucinger S, Pozio E, Cacciò SM (2011) Prevalence and molecular typing of Giardia spp. in captive mammals at the zoo of Zagreb, Croatia. Vet Parasitol 175:40–46

    Article  PubMed  CAS  Google Scholar 

  • Cacciò SM, De Giacomo M, Pozio E (2002) Sequence analysis of the β-giardin gene and development of a PCR-RFLP assay to genotype Giardia duodenalis cysts from human fecal samples. Int J Parasitol 32:1023–1030

    Article  PubMed  Google Scholar 

  • Cacciò SM, Beck R, Lalle M, Marinculic A, Pozio E (2008) Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B. Int J Parasitol 38:1523–1531

    Article  Google Scholar 

  • Hopkins RM, Meloni BP, Groth DM, Wetheral JD, Reynoldson JA, Thompson RC (1997) Ribosomal RNA sequencing reveals differences between the genotypes of Giardia isolates recovered from humans and dogs living in the same locality. J Parasitol 83:44–51

    Article  PubMed  CAS  Google Scholar 

  • Itagaki T, Kinoshita S, Aoki M, Itoh N, Saeki H, Sato N, Uetsuki J, Izumiyama S, Yagita K, Endo T (2005) Genotyping of Giardia intestinalis from domestic and wild animals in Japan using glutamate dehydrogenase gene sequencing. Vet Parasitol 133:283–287

    Article  PubMed  CAS  Google Scholar 

  • Kosuwin R, Putaporntip C, Pattanawong U, Jongwutiwes S (2010) Clonal diversity in Giardia duodenalis isolates from Thailand: evidences for intragenic recombination and purifying selection at the beta giardin locus. Gene 449:1–8

    Article  PubMed  CAS  Google Scholar 

  • Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D, Cacció SM (2005) Genetic heterogeneity at the β-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. Int J Parasitol 35:207–213

    Article  PubMed  CAS  Google Scholar 

  • Lasek-Nesselquist E, Welch DM, Thompson RCA, Steuart RF, Sogin ML (2009) Genetic exchange within and between assemblages of Giardia duodenalis. J Eukaryot Microbiol 56:504–518

    Article  PubMed  CAS  Google Scholar 

  • Lebbad M, Ankarklev J, Tellez A, Leiva B, Andersson JO, Svärd S (2008) Dominance of Giardia assemblage B in León, Nicaragua. Acta Trop 106:44–53

    Article  PubMed  Google Scholar 

  • Lebbad M, Mattsson JG, Christensson B, Ljungström B, Backhans A, Anderson JO, Svärd S (2010) From mouse to moose: multilocus genotyping of Giardia isolates from various animal species. Vet Parasitol 168:231–239

    Article  PubMed  Google Scholar 

  • Levecke B, Geldhof P, Clarebout E, Dorny P, Vercammen F, Cacciò S, Vercruysse J, Geurden T (2009) Molecular characterization of Giardia duodenalis in captive non-human primates reveals mixed assemblage A and B infections and novel polymorphisms. Int J Parasitol 39:1595–1601

    Article  PubMed  Google Scholar 

  • Levine JA, Estevez EG (1983) Method for concentration of parasites from small amount of feces. J Clin Microbiol 18:786–788

    PubMed  CAS  Google Scholar 

  • Monis PT, Caccio SM, Thompson RCA (2009) Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol 25:93–100

    Article  PubMed  Google Scholar 

  • Plutzer J, Karanis P (2009) Rapid identification of Giardia duodenalis by loop-mediated isothermal amplification (LAMP) from faecal and environmental samples and comparative findings by PCR and real-time PCR methods. Parasitol Res 104:1527–1533

    Article  PubMed  CAS  Google Scholar 

  • Read CM, Monis PT, Thompson RCA (2004) Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol 4:125–130

    Article  PubMed  CAS  Google Scholar 

  • Robertson LJ, Hermansen L, Gjerde BK, Strand E, Alvsvag JO, Langeland N (2006) Application of genotyping during an extensive outbreak of waterborne giardiasis in Bergen, Norway, during autumn and winter 2004. Appl Environ Microbiol 72:2212–2217

    Article  PubMed  CAS  Google Scholar 

  • Sagebiel D, Weitzel T, Stark K, Leitmeyer K (2009) Giardiasis in kindergartens: prevalence study in Berlin, Germany, 2006. Parasitol Res 105:681–687

    Article  PubMed  CAS  Google Scholar 

  • Savioli L, Smith H, Thompson A (2006) Giardia and Cryptosporidium join the “Neglected Diseases Initiative”. Trends Parasitol 22:203–208

    Article  PubMed  CAS  Google Scholar 

  • Souza SL, Gennari SM, Richtzenhain LJ, Pena HF, Funada MR, Cortez A, Gregori F, Soares RM (2007) Molecular identification of Giardia duodenalis isolates from humans, dogs, cats and cattle from the state of São Paulo, Brazil, by sequence analysis of fragments of glutamate dehydrogenase (gdh) coding gene. Vet Parasitol 149:268–274

    Article  Google Scholar 

  • Sulaiman IM, Fayer R, Bern C, Gilman RH, Trout JM, Schantz PM, Das P, Lal AA, Xiao L (2003) Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerg Infect Dis 9:1444–1452

    PubMed  CAS  Google Scholar 

  • Sulaiman IM, Jiang J, Singh A, Xiao L (2004) Distribution of Giardia duodenalis genotypes and subgenotypes in raw urban wastewater in Milwaukee, Wisconsin. Appl Environ Microbiol 70:3776–3780

    Article  PubMed  CAS  Google Scholar 

  • Sprong H, Caccio SM, van der Giessen JWB (2009) Identification of zoonotic genotypes of Giardia duodenalis. Plos Neglect Trop D 3:1–12

    Google Scholar 

  • Thompson RCA, Palmer CS, O'Handley R (2008) The public health and clinical significance of Giardia and Cryptosporidium in domestic animals. Vet J 177:18–25

    Article  PubMed  Google Scholar 

  • Upcroft JA, Krauer KG, Upcroft P (2010) Chromosome sequence maps of the Giardia lamblia assemblage A isolate WB. Trends Parasitol 26:484–491

    Article  PubMed  CAS  Google Scholar 

  • Van der Giessen JW, de Vries A, Roos M, Wielinga P, Kortbeek LM, Mank TG (2006) Genotyping of Giardia in Dutch patients and animals: a phylogenetic analysis of human and animal isolates. Int J Parasitol 36:849–858

    Article  PubMed  Google Scholar 

  • Volotao ACC, Souza Júnior JC, Grassini C, Peralta JM, Fernandes O (2008) Genotyping of Giardia duodenalis from Southern Brown Howler Monkeys (Alouatta clamitans) from Brazil. Vet Parasitol 158:133–137

    Article  PubMed  CAS  Google Scholar 

  • Wielinga CM, Thompson RCA (2007) Comparative evaluation of Giardia duodenalis sequence data. Parasitology 134:1795–1821

    Article  PubMed  CAS  Google Scholar 

  • Winkworth CL, Learmonth JJ, Matthaei CD, Townsend CR (2008) Molecular characterization of Giardia isolates from calves and humans in a region in which dairy farming has recently intensified. Appl Environ Microbiol 74:5100–5105

    Article  PubMed  CAS  Google Scholar 

  • Yee J, Dennis PP (1992) Isolation and characterization of a NADP-dependent glutamate dehydrogenase gene from the primitive eucaryote Giardia lamblia. J Biol Chem 267:7539–7544

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Spanish Ministerio de Ciencia e Innovación. Grants: AGL2007-62435/GAN and CGL2006-04343/BOS. The authors wish to thank veterinarians Eva Martínez from the zoo aquarium of Madrid, Miguel Casares, Cati Gerique, and Loles Carbonell from Bioparc Valencia, for their kindly help in collecting faecal samples from their respective centers. We also thank Dr. Blanca Simmons for language advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Alberto Martínez-Díaz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Intra-subassemblage substitutions for glutamate dehydrogenase (gdh) gene from assemblage A. Positions are numbered from the beginning of the reference sequence from GenBank (M84604) (DOC 43 kb)

Online Resource 2

Intra-subassemblage substitutions for glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), and beta-giardin (bg) genes from assemblage B. Positions are numbered from the beginning of the reference sequences from GenBank (AY178756 for gdh, AY368163 for tpi, and AY072726 for bg) (DOC 277 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Díaz, R.A., Sansano-Maestre, J., Martínez-Herrero, M. et al. Occurrence and genetic characterization of Giardia duodenalis from captive nonhuman primates by multi-locus sequence analysis. Parasitol Res 109, 539–544 (2011). https://doi.org/10.1007/s00436-011-2281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2281-z

Keywords

Navigation