Skip to main content

Advertisement

Log in

Molecular cloning and characterization of a cathepsin B from Angiostrongylus cantonensis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Cysteine proteases, a superfamily of hydrolytic enzymes, have numerous functions in parasites. Here, we reported the cloning and characterization of a cDNA encoding a cathepsin B (AcCPB) from Angiostrongylus cantonensis fourth-stage larvae cDNA library. The deduced amino acid sequence analysis indicated AcCPB is related to other cathepsin B family members with an overall conserved architecture. AcCPB is evolutionarily more close to other parasitic nematode cathepsin B than the ones from hosts, sharing 43–53% similarities to the homologues from other organisms. Real-time quantitative PCR analysis revealed that AcCPB was expressed significantly higher in the fourth-stage larvae (L4) and the fifth-stage larvae (L5) than that in the third-stage larvae (L3) and adult worms (Aw). Unexpectedly, AcCPB was expressed at a higher level in L4 and L5 derived from mice than the larvae at the same stages derived from rats. The protease activity of recombinant AcCPB (rAcCPB) expressed in Escherichia coli showed high thermostability and acidic pH optima. The role in ovalbumin digestion and enzyme activity of rAcCPB could be evidently inhibited by cystatin from A.cantonensis. Furthermore, we found rAcCPB increased the expression levels of CD40, MHC II, and CD80 on LPS-stimulated dendritic cells (DCs). In this study, we provided the first experimental evidence for the expression of cathepsin B in A.cantonensis. Besides its highly specific expression in the stages of L4 and L5 when the worms cause dysfunction of the blood–brain barrier of hosts, AcCPB displayed different expression profiles in non-permissive host- and permissive host-derived larval stages and was involved in the maturation of DCs, suggesting a potential role in the central nervous system invasion and the immunoregulation during parasite–host interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander J, Coombs GH, Mottram JC (1998) Leishmania mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Th1 response. J Immunol 161(12):6794–6801

    PubMed  CAS  Google Scholar 

  • Alicata JE (1965) Biology and distribution of the rat lungworm, Angiostrongylus cantonensis, and its relationship to eosinophilic meningoencephalitis and other neurological disorders of man and animals. Adv Parasitol 3:223–248

    Article  PubMed  CAS  Google Scholar 

  • Atkinson HJ, Babbitt PC, Sajid M (2009) The global cysteine peptidase landscape in parasites. Trends Parasitol 25(12):573–581

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  • Bergeron M, Blanchette J, Rouleau P, Olivier M (2008) Abnormal IFN-gamma- dependent immunoproteasome modulation by Trypanosoma cruzi-infected macrophages. Parasite Immunol 30(5):280–292

    Article  PubMed  CAS  Google Scholar 

  • Dalton JP, Neill SO, Stack C, Collins P, Walshe A, Sekiya M, Doyle S, Mulcahy G, Hoyle D, Khaznadji E, Moiré N, Brennan G, Mousley A, Kreshchenko N, Maule AG, Donnelly SM (2003) Fasciola hepatica cathepsin L-like proteases:biology, function, and potential in the development of first generation liver fluke vaccines. Int J Parasitol 33(11):1173–1181

    Article  PubMed  CAS  Google Scholar 

  • Dalton JP, Caffrey CR, Sajid M, Stack C, Donnelly S, Loukas A, Don T, McKerrow J, Halton DW, Brindley PJ (2006) Proteases in trematode biology. In: Maule A, Marks NJ (eds) Parasitic Flatworms, Molecular biology, Biochemistry. Immunology and Physiology. CABI Publishing, Oxford, UK, pp 348–368

    Google Scholar 

  • Dolecková K, Kasný M, Mikes L, Cartwright J, Jedelský P, Schneider EL, Dvorák J, Mountford AP, Craik CS, Horák P (2009) The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol 39(2):201–211

    Article  PubMed  Google Scholar 

  • Draper D, Donohoe W, Mortimer L, Heine RP (1998) Cysteine proteases of Trichomonas aginalis degrade secretory leukocyte protease inhibitor. J Infect Dis 178(3):815–819

    Article  PubMed  CAS  Google Scholar 

  • Duschak VG, Couto AS (2009) Cruzipain, the major cysteine protease of Trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review. Curr Med Chem 16(24):3174–3202

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Mashiyama ST, Braschi S, Sajid M, Knudsen GM, Hansell E, Lim KC, Hsieh I, Bahgat M, Mackenzie B, Medzihradszky KF, Babbitt PC, Caffrey CR, McKerrow JH (2008) Differential use of protease families for invasion by schistosome cercariae. Biochimie 90(2):345–358

    Article  PubMed  CAS  Google Scholar 

  • Fuller AL, McDougald LR (1990) Reduction in cell entry of Eimeria tenella (Coccidia) sporozoites by protease inhibitors, and partial characterization of proteolytic activity associated with intact sporozoites and merozoites. Parasitology 76(4):464–467

    Article  CAS  Google Scholar 

  • Ghoneim H, Klinkert MQ (1995) Biochemical properties of purified cathepsin B from Schistosoma mansoni. Int J Parasitol 25(12):1515–1519

    Article  PubMed  CAS  Google Scholar 

  • He H, Cheng M, Yang X, Meng J, He A, Zheng X, Li Z, Guo P, Pan Z, Zhan X (2009) Preliminary molecular characterization of the human pathogen Angiostrongylus cantonensis. BMC Mol Biol 10:97

    Article  PubMed  Google Scholar 

  • Hüttemann M, Schmahl G, Mehlhorn H (2007) Light and electron microscopic studies on two nematodes, Angiostrongylus cantonensis and Trichuris muris, differing in their mode of nutrition. Parasitol Res 101(Suppl 2):S225–S232

    Article  PubMed  Google Scholar 

  • Jindrak K, Alicata JE (1970) Experimentally induced Angiostrongylus cantonensis infection in dogs. Am J Vet Res 31(3):449–456

    PubMed  CAS  Google Scholar 

  • Lee JD, Yen CM (2005) Protease secreted by the infective larvae of Angiostrongylus cantonensis and its role in the penetration of mouse intestine. Am J Trop Med Hyg 72(6):831–836

    PubMed  CAS  Google Scholar 

  • Lee JD, Tsai LY, Chen CH, Wang JJ, Hsiao JK, Yen CM (2006) Blood-brain barrier dysfunction occurring in mice infected with Angiostrongylus cantonensis. Acta Trop 97(2):204–211

    Article  PubMed  CAS  Google Scholar 

  • Liu YH, Han YP, Li ZY, Wei J, He HJ, Xu CZ, Zheng HQ, Zhan XM, Wu ZD, Lv ZY (2010) Molecular cloning and characterization of cystatin, a cysteine protease inhibitor, from Angiostrongylus cantonensis. Parasitol Res 107(4):915–922

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Lowther J, Robinson MW, Donnelly SM, Xu W, Stack CM, Matthews JM, Dalton JP (2009) The importance of pH in regulating the function of the Fasciola hepatica cathepsin L1 cysteine protease. PLoS Negl Trop Dis 3(1):e369

    Article  PubMed  Google Scholar 

  • Lutz MB, Kukutsch N, Ogilvie AL, Rössner S, Koch F, Romani N, Schuler G (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Meth 223(1):77–92

    Article  CAS  Google Scholar 

  • McKerrow JH, Engel JC, Caffrey CR (1999) Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorg Med Chem 7(4):639–644

    Article  PubMed  CAS  Google Scholar 

  • McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M (2006) Proteases in parasitic diseases. Annu Rev Pathol 1:497–536

    Article  PubMed  CAS  Google Scholar 

  • Mendieta L, Picó A, Tarragó T, Teixidó M, Castillo M, Rafecas L, Moyano A, Giralt E (2010) Novel peptidyl aryl vinyl sulfones as highly potent and selective inhibitors of cathepsins L and B. ChemMedChem 5(9):1556–1567

    Article  PubMed  CAS  Google Scholar 

  • Nagano I, Pei F, Wu Z, Wu J, Cui H, Boonmars T, Takahashi Y (2004) Molecular expression of a cysteine proteinase of Clonorchis sinensis and its application to an enzyme-linked immunosorbent assay for immunodiagnosis of clonorchiasis. Clin Diagn Lab Immunol 11(2):411–416

    PubMed  CAS  Google Scholar 

  • Nikolskaia OV, de A-Lima AP, Kim YV, Lonsdale-Eccles JD, Fukuma T, Scharfstein J, Grab DJ (2006) Blood-brain barrier traversal by African trypanosomes requires calcium signaling induced by parasite cysteine protease. J Clin Invest 116(10):2739–2747

    PubMed  CAS  Google Scholar 

  • Que X, Reed SL (2000) Cysteine proteinases and the pathogenesis of amebiasis. Clin Microbiol Rev 13(2):196–206

    Article  PubMed  CAS  Google Scholar 

  • Que X, Ngo H, Lawton J, Gray M, Liu Q, Engel J, Brinen L, Ghosh P, Joiner KA, Reed SL (2002) The cathepsin B of Toxoplasma gondii, toxopain-1, is critical for parasite invasion and rhoptry protein processing. J Biol Chem 277(28):25791–25797

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Avila L, Slome S, Schuster FL, Gavali S, Schantz PM, Sejvar J, Glaser CA (2009) Eosinophilic meningitis due to Angiostrongylus and Gnathostoma species. Clin Infect Dis 48(3):322–327

    Article  PubMed  Google Scholar 

  • Reed SL (1995) New concepts regarding the pathogenesis of amebiasis. Clin Infect Dis 21(2):S182–S185

    Article  PubMed  Google Scholar 

  • Robinson MW, Dalton JP, Donnelly S (2008) Helminth pathogen cathepsin proteases: it's a family affair. Trends Biochem Sci 33(12):601–608

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120(1):1–21

    Article  PubMed  CAS  Google Scholar 

  • Schrével J, Barrault C, Deguercy A, Grellier P, Lawton P, Heidrich HG, Caballero M, Monsigny M, Mayer R (1993) Plasmodium falciparum proteinases and red blood cell invasion. Parassitologia 35(Suppl):103–105

    PubMed  Google Scholar 

  • Shenai BR, Sijwali PS, Singh A, Rosenthal PJ (2000) Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem 275(37):29000–29010

    Article  PubMed  CAS  Google Scholar 

  • Smooker PM, Jayaraj R, Pike RN, Spithill TW (2010) Cathepsin B proteases of flukes: the key to facilitating parasite control? Trends Parasitol 26(10):506–514

    Article  PubMed  CAS  Google Scholar 

  • Tort J, Brindley PJ, Knox D, Wolfe KH, Dalton JP (1999) Proteinases and associated genes of parasitic helminths. Adv Parasitol 43:161–266

    Article  PubMed  CAS  Google Scholar 

  • Tsai HC, Chung LY, Chen ER, Liu YC, Lee SS, Chen YS, Sy CL, Wann SR, Yen CM (2008) Association of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinase-4 in cerebrospinal fluid with blood-brain barrier dysfunction in patients with eosinophilic meningitis caused by Angiostrongylus cantonensis. Am J Trop Med Hyg 78(1):20–27

    PubMed  CAS  Google Scholar 

  • Turk D, Guncar G (2003) Lysosomal cysteine proteases (cathepsins): promising drug targets. Acta Crystallogr D Biol Crystallogr 59(Pt 2):203–213

    Article  PubMed  Google Scholar 

  • Vary B, Hartmann S, Hoebeke J (2002) Immunomodulatory properties of cystatins. Cell Mol Life Sci 59(9):1503–1512

    Article  Google Scholar 

  • Wolfram M, Ilg T, Mottram JC, Overath P (1995) Antigen presentation by Leishmania mexicana-infected macrophages: activation of helper T cells specific for amastigote cysteine proteinases requires intracellular killing of the parasites. Eur J Immunol 25(4):1094–1000

    Article  PubMed  CAS  Google Scholar 

  • Wongkham C, Tantrawatpan C, Intapan PM, Maleewong W, Wongkham S, Nakashima K (2005) Evaluation of immunoglobulin G subclass antibodies against recombinant Fasciola gigantica cathepsin L1 in an enzyme-linked immunosorbent assay for serodiagnosis of human fasciolosis. Clin Diagn Lab Immunol 12(10):1152–1156

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Jue-heng Wu, Yue Zhu, Sen-mao Li, Li-li Zhang, and Zi-ran Zhao for their expert technical assistances in mass spectrometry, fluorescence microplate reader and assay for enzyme activity. This work was supported by grants from the National Basic Research Program of China (2010CB530004), the National Natural Science Foundation of China (30771888, 30800966), and Research Fund for Students of Sun Yat-sen University (2011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-dao Wu or Zhi-yue Lv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Yp., Li, Zy., Li, Bc. et al. Molecular cloning and characterization of a cathepsin B from Angiostrongylus cantonensis . Parasitol Res 109, 369–378 (2011). https://doi.org/10.1007/s00436-011-2264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2264-0

Keywords

Navigation