Skip to main content

Advertisement

Log in

Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Evidence is accumulating that miRNAs are critically implicated in the outcome of diseases, but little information is available for infectious diseases. This study investigates the hepatic miRNA signature in female C57BL/6 mice infected with self-healing Plasmodium chabaudi malaria. Primary infections result in approximately 50% peak parasitemia on day 8 p.i., approximately 80% survival, and development of protective immunity. The latter is evidenced as 100% survival and 1.5% peak parasitemia upon homolog re-infections of those mice which are still alive on day 56 after primary infection. Such immune mice exhibit increased levels of IgG2a and IgG2b isotypes and still contain P. chabaudi-infected erythrocytes in their livers as revealed by light microscopy and PCR analysis. Primary infections, but not secondary infections, induce an upregulation of hepatic mRNAs encoding IL-1β, TNFα, IFNγ, NF-κB, and iNOS, and a downregulation of mRNAs for CYP7A1 and SULT2A2, respectively. Using miRXplore microarrays containing 634 mouse miRNAs in combination with quantitative RT-PCR, the liver is found to respond to primary infections with an upregulation of the three miRNA species miR-26b, MCMV-miR-M23-1-5p, and miR-1274a, and a downregulation of the 16 miRNA species miR-101b, let-7a, let-7g, miR-193a-3p, miR-192, miR-142-5p, miR-465d, miR-677, miR-98, miR-694, miR-374*, miR-450b-5p, miR-464, miR-377, miR-20a*, and miR-466d-3p, respectively. Surprisingly, about the same pattern of miRNA expression is revealed in immune mice, and this pattern is even sustained upon homolog re-infections of immune mice. These data suggest that development of protective immunity against malarial blood stages of P. chabaudi is associated with a reprogramming of the expression of distinct miRNA species in the female mouse liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bala S, Marcos M, Szabo G (2009) Emerging role of microRNAs in liver diseases. World J Gastroenterol 15:5633–5640

    Article  PubMed  CAS  Google Scholar 

  • Balmer P, Alexander J, Phillips RS (2000) Protective immunity to erythrocytic Plasmodium chabaudi AS infection involves IFNgamma-mediated responses and a cellular infiltrate to the liver. Parasitol 121:473–482

    Article  CAS  Google Scholar 

  • Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Benten WP, Ulrich P, Kühn-Velten WN, Vohr HW, Wunderlich F (1997) Testosterone-induced susceptibility to Plasmodium chabaudi malaria: persistence after withdrawal of testosterone. J Endocrinol 153:275–281

    Article  PubMed  CAS  Google Scholar 

  • Bi Y, Liu G, Yang R (2009) MicroRNAs: novel regulators during the immune response. J Cell Physiol 218:467–472

    Article  PubMed  CAS  Google Scholar 

  • Biggs BA, Gooze L, Wycherley K, Wollish W, Southwell B, Leech JH, Brown GV (1991) Antigenic variation in Plasmodium falciparum. Proc Natl Acad Sci USA 88:9171–9174

    Article  PubMed  CAS  Google Scholar 

  • Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T, Bosio A (2009) Absolute quantification of microRNAs by using a universal reference. RNA 12:2375–2384

    Article  Google Scholar 

  • Chen X (2009) MicroRNA signatures in liver diseases. World J Gastroenterol 15:1665–1672

    Article  PubMed  CAS  Google Scholar 

  • Clough B, Atilola FA, Black B, Pasvol G (1998) The role of rosetting in the multiplication of Plasmodium falciparum: rosette formation neither enhances nor targets parasite invasion into uninfected red cells. Br J Haematol 100:99–104

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Lambert PH, Cohen S, Warren KS (1982) Immunology of parasitic infections, 2nd edn. Blackwell, Oxford, pp 422–474

    Google Scholar 

  • Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163

    Article  PubMed  CAS  Google Scholar 

  • Davidson-Moncada J, Papavasiliou FN, Tam W (2010) MicroRNAs of the immune system: roles in inflammation and cancer. Ann NY Acad Sci 1183:183–194

    Article  PubMed  CAS  Google Scholar 

  • De Martino I, Visone R, Fedele M, Petrocca F, Palmieri D, Martinez Hoyos J, Forzati F, Croce CM, Fusco A (2009) Regulation of microRNA expression by HMGA1 proteins. Oncogene 28:1432–1442

    Article  PubMed  Google Scholar 

  • Delić D, Warskulat U, Borsch E, Al-Qahtani S, Al-Quraishi S, Häussinger D, Wunderlich F (2010) Loss of ability to self-heal malaria upon taurine transporter deletion. Infect Immun 78:1642–1649

    Article  PubMed  Google Scholar 

  • Dockrell HM, De Souza JB, Playfair HL (1980) The role of the liver in immunity to blood-stage murine malaria. Immunol 41:421–430

    CAS  Google Scholar 

  • Doolan DL, Dobaño C, Baird JK (2009) Acquired immunity to malaria. Clin Microbiol Rev 22:13–36

    Article  PubMed  CAS  Google Scholar 

  • Fu YX, Chaplin DD (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17:399–433

    Article  PubMed  CAS  Google Scholar 

  • Fütterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K (1998) The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9:59–70

    Article  PubMed  Google Scholar 

  • Giraldo LE, Jennings GJ, Deleersnijder W, Hamers-Casterman C, Wiser MF (1999) Characterization of a Plasmodium chabaudi gene encoding a protein with glutamate-rich tandem repeats. Parasitol Res 85:41–46

    Article  PubMed  CAS  Google Scholar 

  • Gomase VS, Tagore S (2008) Blood stage parasites: sufficient to induce protective immunity. Curr Drug Metab 9:238–240

    Article  PubMed  CAS  Google Scholar 

  • Goodman AL, Draper SJ (2010) Blood-stage malaria vaccines - recent progress and future challenges. Ann Trop Med Parasitol 104:189–211

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  • Hartz D, Ayane M, Chluba-De Tapia J, Wirbelauer C, Langhorne J, Gillard-Blass S (1993) Cloning and sequencing of a cDNA fragment from Plasmodium chabaudi that contains repetitive sequences coding for a potentially lysine-rich aspartic acid-rich protein. Parasitol Res 79:133–139

    Article  PubMed  CAS  Google Scholar 

  • Häussinger D, Kubitz R, Reinehr R, Bode JG, Schliess F (2004) Molecular aspects of medicine: from experimental to clinical hepatology. Mol Aspects Med 25:221–360

    Article  PubMed  Google Scholar 

  • Iorio MV, Piovan C, Croce CM (2010) Interplay between microRNAs and the epigenetic machinery: An intricate network. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2010.05.005

  • Jarra W, Brown KN (1989) Protective immunity to malaria: studies with cloned lines of rodent malaria in CBA/Ca mice. IV. The specificity of mechanisms resulting in crisis and resolution of the primary acute phase parasitaemia of Plasmodium chabaudi chabaudi and P. yoelii yoelii. Parasite Immunol 11:1–13

    Article  PubMed  CAS  Google Scholar 

  • Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo RD (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125–1129

    Article  PubMed  CAS  Google Scholar 

  • Kerr TA, Davidson NO (2010) Therapeutic RNA manipulation in liver disease. Hepatology 51:1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Shigenaga J, Moser A, Grunfeld C, Feingold KR (2004) Suppression of DHEA sulfotransferase (Sult2A1) during the acute-phase response. Am J Physiol Endocrinol Metab 287:E731–E738

    Article  PubMed  CAS  Google Scholar 

  • Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J (2008) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68:2094–2105

    Article  PubMed  CAS  Google Scholar 

  • Krücken J, Dkhil MA, Braun JV, Schroetel RM, El-Khadragy M, Carmeliet P, Mossmann H, Wunderlich F (2005) Testosterone suppresses protective responses of the liver to blood-stage malaria. Infect Immun 73:436–443

    Article  PubMed  Google Scholar 

  • Krücken J, Delić D, Pauen H, Wojtalla A, El-Khadragy M, Dkhil MA, Mossmann H, Wunderlich F (2009) Augmented particle trapping and attenuated inflammation in the liver by protective vaccination against Plasmodium chabaudi malaria. Malar J 8:54

    Article  PubMed  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, BisselsU IJ, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 7:1401–1414

    Article  Google Scholar 

  • Langhorne J, Quin SJ, Sanni LA (2002) Mouse models of blood-stage malaria infections: immune responses and cytokines involved in protection and pathology. Chem Immunol 80:204–228

    Article  PubMed  CAS  Google Scholar 

  • Lanners HN, Bafford RA, Wiser MF (1999) Characterization of the parasitophorous vacuole membrane from Plasmodium chabaudi and implications about its role in the export of parasite proteins. Parasitol Res 85:349–355

    Article  PubMed  CAS  Google Scholar 

  • Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen CZ (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161

    Article  PubMed  CAS  Google Scholar 

  • Lindsay MA (2008) microRNAs and the immune response. Trends Immunol 29:343–351

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 4:402–408

    Article  Google Scholar 

  • Lu L, Liston A (2009) MicroRNA in the immune system, microRNA as an immune system. Immunology 3:291–298

    Article  Google Scholar 

  • Mackinnon MJ, Read AF (2003) Virulence in malaria: an evolutionary viewpoint. Philos Trans R Soc Lond B Biol Sci 359:965–986

    Google Scholar 

  • Mannoor MK, Weerasinghe A, Halder RC, Reza S, Morshed M, Ariyasinghe A, Watanabe H, Sekikawa H, Abo T (2001) Resistance to malarial infection is achieved by the cooperation of NK1.1(+) and NK1.1(-) subsets of intermediate TCR cells which are constituents of innate immunity. Cell Immunol 211:96–104

    Article  PubMed  CAS  Google Scholar 

  • Mannoor MK, Halder RC, Morshed SR, Ariyasinghe A, Bakir HY, Kawamura H, Watanabe H, Sekikawa H, Abo T (2002) Essential role of extrathymic T cells in protection against malaria. J Immunol 169:301–306

    PubMed  CAS  Google Scholar 

  • Marquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP (2010) MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 298:G535–G541

    Article  PubMed  CAS  Google Scholar 

  • McCall M B, Sauerwein RW (2010) Interferon-{gamma}--central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria. J Leukoc Biol. doi:10.1189/jlb.0310137

  • Mehlhorn H (2008) Encyclopedia of parasitology. Springer, Berlin

    Book  Google Scholar 

  • Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415:673–679

    Article  PubMed  CAS  Google Scholar 

  • Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG, Lindsay MA (2007) Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8:240

    Article  PubMed  Google Scholar 

  • Mota MM, Brown KN, Holder AA, Jarra W (1998) Acute Plasmodium chabaudi chabaudi malaria infection induces antibodies which bind to the surfaces of parasitized erythrocytes and promote their phagocytosis by macrophages in vitro. Infect Immun 66:4080–4086

    PubMed  CAS  Google Scholar 

  • Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21:578–589

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609

    Article  PubMed  Google Scholar 

  • Pain A, Ferguson DJP, Kai O, Urban BC, Lowe BS, Marsh K, Roberts DJ (2001) Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc Natl Acad Sci 98:1805–1810

    Article  PubMed  CAS  Google Scholar 

  • Pasvol G, Weatherall DJ, Wilson RJM (1980) The increased susceptibility of young red cells to invasion by the malarial parasite Plasmodium falciparum. Br J Haematol 45:285–295

    Article  PubMed  CAS  Google Scholar 

  • Pawlicki JM, Steitz JA (2010) Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function. Trends Cell Biol 20(1):52–61

    Article  PubMed  CAS  Google Scholar 

  • Pierce SK, Miller LH (2009) World Malaria Day 2009: what malaria knows about the immune system that immunologists still do not. J Immunol 182:5171–5177

    Article  PubMed  CAS  Google Scholar 

  • Roberts DJ, Craig AG, Berendt AR, Pinches R, Nash G, Marsh K, Newbold CI (1992) Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357:689–692

    Article  PubMed  CAS  Google Scholar 

  • Roberts DJ, Pain A, Kai O, Kortok M, Marsh K (2000) Autoagglutination of malaria-infected red blood cells and malaria severity. Lancet 355:1427–1428

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611

    Article  PubMed  CAS  Google Scholar 

  • Ruvkun G (2008) The perfect storm of tiny RNAs. Nat Med 10:1041–1045

    Article  Google Scholar 

  • Schmitt-Wrede HP, Qiao ZD, Wunderlich F (1993) A cDNA putatively encoding the Pc90 erythrocyte membrane antigen of Plasmodium chabaudi. Parasitol Res 79:80–81

    Article  PubMed  CAS  Google Scholar 

  • Smith EC, Taylor-Robinson AW (2003) Parasite-specific immunoglobulin isotypes during lethal and non-lethal malaria infections. Parasitol Res 89:26–33

    Article  PubMed  Google Scholar 

  • Snounou G, Jarra W, Viriyakosl S, Wood JC, Brown KN (1989) Use of a DNA probe to analyse the dynamics of infection with rodent malaria parasites confirms that parasite clearance during crisis is predominantly strain- and species-specific. Mol Biochem Parasitol 37:37–46

    Article  PubMed  CAS  Google Scholar 

  • Sonkoly E, Ståhle M, Pivarcsi A (2008) MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol 18:131–140

    Article  PubMed  CAS  Google Scholar 

  • Su Z, Stevenson MM (2000) Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infect Immun 68:4399–4406

    Article  PubMed  CAS  Google Scholar 

  • Taganov KD, Boldin MP, Baltimore D (2007) MicroRNAs and immunity: tiny players in a big field. Immunity 26:133–137

    Article  PubMed  CAS  Google Scholar 

  • Taverne J, Rahman D, Dockrell HM, Alavi A, Leveton C, Playfair JHL (1987) Activation of liver macrophages in murine malaria is enhanced by vaccination. Clin Exp Immunol 70:508–514

    PubMed  CAS  Google Scholar 

  • Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K (2007) Regulation of the germinal center response by microRNA-155. Science 316:604–608

    Article  PubMed  CAS  Google Scholar 

  • Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, Smith KG, Rada C, Enright AJ, Toellner KM, Maclennan IC, Turner M (2007) microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27:847–859

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, Galas DJ (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA 11:4402–4407

    Article  Google Scholar 

  • Wipasa J, Hemsokana P, Ruankham T, Hongsibsong S (2009) Investigation of memory responses following Plasmodium chabaudi AS infection in mice distinct in susceptibility to clinical malaria. Parasitol Res 106:283–287

    Article  PubMed  Google Scholar 

  • Wunderlich F, Helwig M (1987) Plasmodium chabaudi malaria: red blood cells with altered membrane proteins in immune mice. Eur J Cell Biol 43:499–500

    PubMed  CAS  Google Scholar 

  • Wunderlich F, Stübig H, Königk E (1982) Development of Plasmodium chabaudi in mouse red blood cells: structural properties of the host and parasite membranes. J Protozool 29:60–66

    PubMed  CAS  Google Scholar 

  • Wunderlich F, Schillinger G, Helwig M (1985) Fractionation of Plasmodium chabaudi-infected erythrocytes into parasites and ghosts. Z Parasitenkd 71:545–551

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich F, Helwig M, Schillinger G, Vial H, Philippot J, Speth V (1987) Isolation and characterization of parasites and host cell ghosts from erythrocytes infected with Plasmodium chabaudi. Mol Biochem Parasitol 23:103–115

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich F, Brenner HH, Helwig M (1988a) Plasmodium chabaudi malaria: protective immunization with surface membranes of infected erythrocytes. Infect Immun 56:3326–3328

    PubMed  CAS  Google Scholar 

  • Wunderlich F, Helwig M, Schillinger G, Speth V (1988b) Cryptic disposition of antigenic parasite proteins in plasma membranes of erythrocytes infected with Plasmodium chabaudi. Mol Biochem Parasitol 30:55–65

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich F, Helwig M, Schillinger G, Speth V, Wiser MF (1988c) Expression of the parasite protein Pc90 in plasma membranes of erythrocytes infected with Plasmodium chabaudi. Eur J Cell Biol 47:157–164

    PubMed  CAS  Google Scholar 

  • Wunderlich F, Dkhil MA, Mehnert LI, Braun JV, El-Khadragy M, Borsch E, Hermsen D, Benten WPM, Pfeffer K, Mossmann H, Krücken J (2005) Testosterone responsiveness of spleen and liver in female lymphotoxin beta receptor-deficient mice resistant to blood-stage malaria. Microbes Infect 3:399–409

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft through GRK 1427 and the Centere of Excellence for Biodiversity Research, College of Science, King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wunderlich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Hy5/Hy3 false-color images after scanning of microarrays. Livers were removed from non-infected naïve mice (Nd0) and immune mice (Id0) as well as from corresponding mice after infection with P. chabaudi malaria for 8 days, respectively (Nd8/Id8). RNA was isolated, labeled, and hybridized with fluorescent Hy5 (red color). The universal reference RNA was labeled with fluorescent Hy3 (green color). Hybridization of microarrays was done with equal amounts of the four experimental samples and the universal reference. Red color indicates Hy5 fluorescence derived from the two experimental samples, i.e. signal intensity of the experimental samples is higher than that of green Hy3 fluorescence derived from the universal reference RNA. Green spots indicate that the fluorescence intensity of the universal reference is stronger than in the experimental samples. Yellow spots indicate that the signal intensities are equal for both experimental samples and universal reference. (JPG 291 KB)

High resolution image file (TIFF 128 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delić, D., Dkhil, M., Al-Quraishy, S. et al. Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria. Parasitol Res 108, 1111–1121 (2011). https://doi.org/10.1007/s00436-010-2152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2152-z

Keywords

Navigation