Skip to main content

Advertisement

Log in

Construction, purification, and evaluation of multivalent DNA vaccine against Schistosoma japonicum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

DNA vaccine encoding a multivalent antigen is a novel approach of protective immunization. Four Schistosoma japonicum candidate antigen genes, glyceraldehyde-3-phosphate dehydrogenase (SjGAPDH), 23 kDa transmembrane protein (Sj23), 14 kDa fatty-acid binding protein (SjFABP) and 26 kDa glutathione-S-transferase (Sj26), are recombined into two pieces of fusion genes SjFABP.Sj23 and Sj26.SjGAPDH, respectively. Tetravalent DNA vaccine pVIVO2-SjFABP.Sj23/Sj26.SjGAPDH is constructed by co-expressing these two fusion genes. The super-coiled DNA vaccines for large-scale clinic application were purified by sequential chromatographies including group separation chromatography and affinitive chromatographies. The purified DNA vaccines were evaluated for in vivo and in vitro transfection assay. The immunoprotective properties of the different kinds of constructed DNA vaccines were appraised by pharmacological trials. The pharmacological trials results showed that tetravalent DNA vaccine has higher protective efficiency than other tested DNA vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Sj :

Schistosoma japonicum

SEC:

size-exclusion chromatography

AC:

affinity chromatography

IIF:

indirect immunofluorescence

References

  • Bergquist NR (2002) Schistosomiasis: from risk assessment to control. Trends Parasitol 18:309–314

    Article  PubMed  Google Scholar 

  • Da’dara AA, Skelly PJ, Wang MM et al (2001) Immunization with plasmid DNA encoding the integral membrane protein, Sm23, elicits a protective immune response against schistosome infection in mice. Vaccine 20:359–369

    Article  PubMed  Google Scholar 

  • Eon-Duval A, Burke G (2004) Purification of pharmaceutical-grade plasmid DNA by anion-exchange chromatography in an RNase-free process. J Chromatogr B Analyt Technol Biomed Life Sci 804:327–335

    Article  CAS  PubMed  Google Scholar 

  • Fallon PG (2000) Immunopathology of schistosomiasis: a cautionary tale of mice and men. Immunol Today 21:29–35

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Hu JF, Chen H et al (2005) Studies on effect enhancement of the Schistosoma japonicum DNA vaccine pVIVO2-IL12-Sj23 by vegetal polysaccharides. Chin J Parasitol Parasit Dis 23:401–403

    Google Scholar 

  • Furlong ST, Caulfield JP (1989) Schistosoma mansoni: synthesis and release of phospholipids, lysophospholipids, and neutral lipids by schistosomula. Exp Parasitol 69:65–77

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Shi YE, Bu LY et al (2004) Immune responses against Schistosoma japonicum after vaccinating mice with a multivalent DNA vaccine encoding integrated membrane protein Sj23 and cytokine interleukin-12. Chin Med J (Engl) 117:1842–1846

    CAS  Google Scholar 

  • Harder A (2002) Chemotherapeutic approaches to protozoa: Giardia, Trichomonas and Entamoeba-current level of knowledge and outlook. Parasitol Res 88:591

    Article  PubMed  Google Scholar 

  • Hoffmann KF, Cheever AW, Wynn TA (2000) IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J Immunol 164:6406–6416

    CAS  PubMed  Google Scholar 

  • Hooker CW, Brindley PJ (1996) Cloning and characterisation of strain-specific transcripts encoding triosephosphate isomerase, a candidate vaccine antigen from Schistosoma japonicum. Mol Biochem Parasitol 82:265–269

    Article  CAS  PubMed  Google Scholar 

  • Horton RM, Hunt HD, Ho SN et al (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Howes EL Jr, Morrison DC (1980) Lipid A dependence of the ocular response to circulating endotoxin in rabbits. Infect Immun 30:786–790

    CAS  PubMed  Google Scholar 

  • Hu Y, Shi YE, Zhu XH et al (2006) Construction and expression of Schistosoma japonicum bivalent DNA vaccines and their efficiencies of protective immunity. Chin J Parasitol Parasit Dis Dec 24:97–101

    Google Scholar 

  • Hu Y, Shi YE, Yu LJ et al (2007) Studies on the protective immunity of Schistosoma japonicum bivalent DNA vaccine encoding Sj23 and Sj14. Exp Parasitol 115:379–386

    Article  CAS  Google Scholar 

  • Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12:857–872

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Yu LJ, Liu Z et al (2006) Schistosoma japonicum: the design and experimental evaluation of a multivalent DNA vaccine. Cell Mol Biol Lett 11:449–460

    Article  CAS  PubMed  Google Scholar 

  • Liu SX, Song GC, Xu YX et al (1995) Immunization of mice with recombinant Sjc26GST induces a pronounced anti-fecundity effect after experimental infection with Chinese Schistosoma japonicum. Vaccine 13:603–607

    Article  CAS  PubMed  Google Scholar 

  • Liu SX, Song GC, Xu YX et al (1998) Progress in the development of a vaccine against schistosomiasis in China. Int J Infect Dis 2:176–180

    Article  Google Scholar 

  • Loukas A, Jones MK, King LT et al (2001) Receptor for Fc on the surfaces of schistosomes. Infect Immun 69:3646–3651

    Article  CAS  PubMed  Google Scholar 

  • McManus DP, Bartley PB (2004) A vaccine against Asian schistosomiasis. Parasitol Int 53:163–173

    Article  CAS  PubMed  Google Scholar 

  • Mcmanus DP, Liu S, Song G et al (1998) The vaccine efficacy of native paramyosin (Sj-97) against Chinese Schistosoma japonicum. Int J Parasitol 28:1739–1742

    Article  CAS  PubMed  Google Scholar 

  • Meyer F, Meyer H, Bueding E (1970) Lipid metabolism in the parasitic and free-living flatworms, Schistosoma mansoni and Dugesia dorotocephala. Biochim Biophys Acta 210:257–266

    CAS  PubMed  Google Scholar 

  • Patz JA, Graczyk TK, Geller N et al (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405

    Article  CAS  PubMed  Google Scholar 

  • Ramirez BL, Kurtis JD, Wiest PM et al (1996) Paramyosin: a candidate vaccine antigen against Schistosoma japonicum. Parasite Immunol 18:49–52

    Article  CAS  PubMed  Google Scholar 

  • Ren JG, Zhu YC, Harn DA et al (2001) Protective immunity induced by 23 kDa membrane protein DNA vaccine of Schistosoma japonicum Chinese strain in mice. Chin J Parasitol Parasit Dis Dec 19:336–339

    CAS  Google Scholar 

  • Ribeiro-Dos-Santos G, Verjovski-Almeida S, Leite LC (2006) Schistosomiasis—a century searching for chemotherapeutic drugs. Parasitol Res 99:505–521

    Article  PubMed  Google Scholar 

  • Ross AG, Bartley PB, Sleigh AC et al (2002) Schistosomiasis. N Engl J Med 346:1212–1220

    Article  PubMed  Google Scholar 

  • Siddiqui AA, Ahmad G, Damian RT (2008) Kennedy RC (2008) Experimental vaccines in animal models for schistosomiasis. Parasitol Res 102:825–833

    Article  PubMed  Google Scholar 

  • Smahel M (2002) DNA vaccines. Cas Lék Cesk 141(Suppl):26–32

    PubMed  Google Scholar 

  • Stavitsky AB, Metz C, Liu S et al (2003) Blockade of macrophage migration inhibitory factor (MIF) in Schistosoma japonicum-infected mice results in an increased adult worm burden and reduced fecundity. Parasite Immunol 25:369–374

    Article  CAS  PubMed  Google Scholar 

  • US Food and Drug Administration (2007) Guidance for industry: considerations for plasmid DNA vaccines for infectious disease indications. Biotechnol Law Rep 26:641–647

    Article  Google Scholar 

  • Waine GJ, Becker M, Yang W et al (1993) Cloning, molecular characterization, and functional activity of Schistosoma japonicum glyceraldehyde-3-phosphate dehydrogenase, a putative vaccine candidate against schistosomiasis japonica. Infect Immun 61:4716–4723

    CAS  PubMed  Google Scholar 

  • Wolff JA, Malone RW, Williams P et al (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Ph.D. Programs Foundation of Ministry of Education of China (no. 20070487059), Program for New Century Excellent Talents in University (NCET-06-0646), and National High Technology Research and Development Program of China (no. 2004AA2Z3212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Jiang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Liu, HF., Lu, MB. et al. Construction, purification, and evaluation of multivalent DNA vaccine against Schistosoma japonicum . Parasitol Res 108, 115–121 (2011). https://doi.org/10.1007/s00436-010-2040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2040-6

Keywords

Navigation