Skip to main content

Advertisement

Log in

Selection and phenotype characterization of potassium antimony tartrate-resistant populations of four New World Leishmania species

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In the present study, we selected in vitro populations of Leishmania Viannia guyanensis, L.V. braziliensis, L. Leishmania amazonensis and L.L. infantum chagasi that were resistant to potassium antimony tartrate (SbIII). The resistance index of these populations varied from 4- to 20-fold higher than that of their wild-type counterparts. To evaluate the stability of the resistance phenotype, these four resistant populations were passaged 37 to 47 times in a culture medium without SbIII. No change was observed in the resistance indexes of L.V. guyanensis (19-fold) and L.L. infantum chagasi (4-fold). In contrast, a decrease in the resistance index was observed for L.V. braziliensis (from 20- to 10-fold) and L.L. amazonensis (from 6- to 3-fold). None of the antimony-resistant populations exhibited cross-resistance to amphotericin B and miltefosine. However, the resistant populations of L.V. braziliensis, L.L. amazonensis and L.L. infantum chagasi were also resistant to paromomycin. A drastic reduction was observed in the infectivity in mice for the resistant L.V. guyanensis, L.L. amazonensis and L.V. braziliensis populations. The SbIII-resistant phenotype of L.V. braziliensis was stable after one passage in mice. Although the protocol of induction was the same, the SbIII-resistant populations showed different degrees of tolerance, stability, infectivity in mice and cross-resistance to antileishmanial drugs, depending on the Leishmania species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

SbIII:

potassium antimony tartrate

WTS:

wild-type susceptible

SbR:

SbIII-resistant

Lg:

L.V. guyanensis

Lb:

L.V. braziliensis

La:

L.L. amazonensis

Lc:

L.L. infantum chagasi

References

  • Al-Mohammed HI, Chance ML, Bates PA (2005) Production and characterization of stable amphotericin-resistant amastigotes and promastigotes of Leishmania mexicana. Antimicrob Agents Chemother 49(8):3274–3280

    Article  CAS  PubMed  Google Scholar 

  • Anacleto C, Abdo MC, Ferreira AV, Murta SM, Romanha AJ, Fernandes AP, Moreira ES (2003) Structural and functional analysis of an amplification containing a PGPA gene in a glucantime-resistant Leishmania (Viannia) guyanensis cell line. Parasitol Res 90(2):110–118

    PubMed  Google Scholar 

  • Arana FE, Pérez-Victoria JM, Repetto Y, Morello A, Castanys S, Gamarro F (1998) Involvement of thiol metabolism in resistance to glucantime in Leishmania tropica. Biochem Pharmacol 56:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Basselin M, Robert-Gero M (1998) Alterations in membrane fluidity, lipid metabolism, mitochondrial activity, and lipophosphoglycan expression in pentamidine-resistant Leishmania. Parasitol Res 84(1):78–83

    Article  CAS  PubMed  Google Scholar 

  • Berman JD, Ksionski G, Chapman WL, Waits VB, Hanson WL (1992) Activity of amphotericin B cholesterol dispersion (Amphocil) in experimental visceral leishmaniasis. Antimicrob Agents Chemother 36:1978–1980

    CAS  PubMed  Google Scholar 

  • Bories C, Cojean S, Huteau F, Loiseau PM (2008) Selection and phenotype characterisation of sitamaquine-resistant promastigotes of Leishmania donovani. Biomed Pharmacother 62:164–167

    Article  CAS  PubMed  Google Scholar 

  • Brochu C, Wang J, Roy G, Messier N, Wang XY, Saravia NG, Ouellette M (2003) Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother 47:3073–3079

    Article  CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2009) Available from: www.dpd.cdc.gov/dpdx/HTML/Leishmaniasis.htm. Reviewed November 14

  • Croft SL (2001) Monitoring drug resistance in leishmaniasis. Trop Med Int Health 6(11):899–905

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    Article  CAS  PubMed  Google Scholar 

  • Cunningham ML, Titus RG, Turco SJ, Beverley SM (2001) Regulation of differentiation to the infective stage of the protozoan parasite Leishmania major by tetrahydrobiopterin. Science 292:285–287

    Article  CAS  PubMed  Google Scholar 

  • Davidson RN, Croft SL, Scott A, Maini M, Moody AH, Bryceson AD (1991) Liposomal amphotericin B in drug-resistant visceral leishmaniasis. Lancet 337:1061–1062

    Article  CAS  PubMed  Google Scholar 

  • de Roode JC, Culleton R, Bell AS, Read AF (2004) Competitive release of drug resistance following drug treatment of mixed Plasmodium chabaudi infections. Malar J 14:33

    Article  Google Scholar 

  • Decuypere S, Rijal S, Yardley V, De Doncker S, Laurent T, Khanal B, Chappuis F, Dujardin JC (2005) Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother 49(11):4616–4621

    Article  CAS  PubMed  Google Scholar 

  • Dey S, Papadopoulou B, Haimeur A, Roy G, Grondin K, Dou D, Rosen BP, Ouellette M (1994) High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol 67(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • El Fadili K, Messier N, Leprohon P, Roy G, Guimond C, Trudel N, Saravia NG, Papadopoulou B, Légaré D, Ouellette M (2005) Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob Agents Chemother 49:1988–1993

    Article  CAS  PubMed  Google Scholar 

  • García N, Figarella K, Mendoza-León A, Ponte-Sucre A (2000) Changes in the infectivity, pyruvate kinase activity, acid phosphatase activity and P-glycoprotein expression in glibenclamide-resistant Leishmania mexicana. Parasitol Res 86(11):899–904

    Article  PubMed  Google Scholar 

  • Gazola KC, Ferreira AV, Anacleto C, Michalick MS, Andrade AF, Moreira ES (2001) Cell surface carbohydrates and in vivo infectivity of glucantime-sensitive and resistant Leishmania (Viannia) guyanensis cell lines. Parasitol Res 87(11):935–940

    CAS  PubMed  Google Scholar 

  • Geretti AM (2005) The clinical significance of viral fitness. J HIV Ther 10(1):6–10

    CAS  PubMed  Google Scholar 

  • Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279(30):31010–31017

    Article  CAS  PubMed  Google Scholar 

  • Haimeur A, Brochu C, Genest P, Papadopoulou B, Ouellette M (2000) Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol 108:131–135

    Article  CAS  PubMed  Google Scholar 

  • Hayward R, Saliba KJ, Kirk K (2005) pfmdr1 mutations associated with chloroquine resistance incur a fitness cost in Plasmodium falciparum. Mol Microbiol 55:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Herwaldt BL (1999) Leishmaniasis. Lancet 354:1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Jhingran A, Chawla B, Saxena S, Barrett MP, Madhubala R (2009) Paromomycin: uptake and resistance in Leishmania donovani. Mol Biochem Parasitol 164:111–117

    Article  CAS  PubMed  Google Scholar 

  • Lenski RE (1998) Bacterial evolution and the cost of antibiotic resistance. Int Microbiol 1(4):265–270

    CAS  PubMed  Google Scholar 

  • Lipoldova M, Demant P (2006) Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet 7:294–305

    Article  CAS  PubMed  Google Scholar 

  • Lira R, Mendez S, Carrera L, Jaffe C, Neva F, Sacks D (1998) Leishmania tropica: the identification and purification of metacyclic promastigotes and use in establishing mouse and hamster models of cutaneous and visceral disease. Exp Parasitol 89:331–342

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Tran J, Li C, Ganesan L, Wood D, Morrissette N (2008) Secondary mutations correct fitness defects in Toxoplasma gondii with dinitroaniline resistance mutations. Genetics 180(2):845–856

    Article  CAS  PubMed  Google Scholar 

  • Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M (2005) Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol 57(6):1690–1699

    Article  CAS  PubMed  Google Scholar 

  • Marsden PD (1986) Mucosal leishmaniasis (‘espundia’ Escomel, 1911). Trans R Soc Trop Med Hyg 80:859–876

    Article  CAS  PubMed  Google Scholar 

  • Mbongo N, Loiseau PM, Billion MA, Robert-Gero M (1998) Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother 42:352–357

    CAS  PubMed  Google Scholar 

  • Moreira ES, Anacleto C, Petrillo-Peixoto ML (1998) Effect of glucantime on field and patient isolates of New World Leishmania: use of growth parameters of promastigotes to assess antimony susceptibility. Parasitol Res 84:720–726

    Article  CAS  PubMed  Google Scholar 

  • Natera S, Machuca C, Padrón-Nieves M, Romero A, Díaz E, Ponte-Sucre A (2007) Leishmania spp.: proficiency of drug-resistant parasites. Int J Antimicrob Agents 29(6):637–642

    Article  CAS  PubMed  Google Scholar 

  • Ouellette M, Drummelsmith J, Papadopoulou B (2004) Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat 7(4–5):257–266

    Article  CAS  PubMed  Google Scholar 

  • Romero GA, Guerra MV, Paes MG, Macêdo VO (2001) Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: therapeutic response to meglumine antimoniate. Am J Trop Med Hyg 65:456–465

    CAS  PubMed  Google Scholar 

  • Seifert K, Matu S, Javier Pérez-Victoria F, Castanys S, Gamarro F, Croft SL (2003) Characterisation of Leishmania donovani promastigotes resistant to hexadecylphosphocholine (miltefosine). Int J Antimicrob Agents 22:380–387

    Article  CAS  PubMed  Google Scholar 

  • Sereno D, Cavaleyra M, Zemzoumi K, Maquaire S, Ouaissi A, Lemesre JL (1998) Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob Agents Chemother 42:3097–3102

    CAS  PubMed  Google Scholar 

  • Sereno D, Holzmuller P, Lemesre JL (2000) Efficacy of second line drugs on antimonyl-resistant amastigotes of Leishmania infantum. Acta Trop 74:25–31

    Article  CAS  PubMed  Google Scholar 

  • Shaked-Mishan P, Ulrich N, Ephros M, Zilberstein D (2001) Novel intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem 276:3971–3976

    Article  CAS  PubMed  Google Scholar 

  • Shaw JJ (2006) Further thoughts on the use of the name Leishmania (Leishmania) infantum chagasi for the aetiological agent of American visceral leishmaniasis. Mem Inst Oswaldo Cruz 101:577–579

    Article  PubMed  Google Scholar 

  • Shimony O, Jaffe CL (2008) Rapid fluorescent assay for screening drugs on Leishmania amastigotes. J Microbiol Methods 75(2):196–200

    Article  CAS  PubMed  Google Scholar 

  • Sundar S (2001) Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health 6:849–854

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, More DK, Singh MK, Singh VP, Sharma S, Makharia A, Kumar PC, Murray HW (2000) Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis 31:1104–1107

    Article  CAS  PubMed  Google Scholar 

  • Thakur CP, Thakur S, Narayan S, Sinha A (2008) Comparison of treatment regimens of kala-azar based on culture & sensitivity of amastigotes to sodium antimony gluconate. Indian J Med Res 127:582–588

    CAS  PubMed  Google Scholar 

  • Walliker D, Hunt P, Babiker H (2005) Fitness of drug-resistant malaria parasites. Acta Trop 94:251–259, Review

    CAS  PubMed  Google Scholar 

  • Wyllie S, Cunningham ML, Fairlamb AH (2004) Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem 279:39925–39932

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Lucas Antônio Miranda Ferreira (UFMG/Brazil) for providing the miltefosine. This investigation received financial support from the following agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvane M. F. Murta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liarte, D.B., Murta, S.M.F. Selection and phenotype characterization of potassium antimony tartrate-resistant populations of four New World Leishmania species. Parasitol Res 107, 205–212 (2010). https://doi.org/10.1007/s00436-010-1852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-1852-8

Keywords

Navigation