Skip to main content

Advertisement

Log in

(−)−Hinokinin-loaded poly(d,l-lactide-co-glycolide) microparticles for Chagas disease

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The (−)−hinokinin display high activity against Trypanosoma cruzi in vitro and in vivo. (−)−Hinokinin-loaded poly(d,l-lactide-co-glycolide) microparticles were prepared and characterized in order to protect (−)−hinokinin of biological interactions and promote its sustained release for treatment of Chagas disease. The microparticles contain (−)−hinokinin were prepared by the classical method of the emulsion/solvent evaporation. The scanning electron microscopy, light-scattering analyzer were used to study the morphology and particle size, respectively. The encapsulation efficiency was determined, drug release studies were kinetically evaluated, and the trypanocidal effect was evaluated in vivo. (−)−Hinokinin-loaded microparticles obtained showed a mean diameter of 0.862 µm with smooth surface and spherical shape. The encapsulation efficiency was 72.46 ± 2.92% and developed system maintained drug release with Higuchi kinetics. The preparation method showed to be suitable, since the morphological characteristics, encapsulation efficiency, and in vitro release profile were satisfactory. In vivo assays showed significant reduction of mice parasitaemia after administration of (−)−hinokinin-loaded microparticles. Thus, the developed microparticles seem to be a promising system for sustained release of (−)−hinokinin for treatment of Chagas disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison SD (2008) Analysis of initial burst in PLGA microparticles. Expert Opin Drug Deliv 5(6):615–628

    Article  CAS  PubMed  Google Scholar 

  • Bastos JK, Gottlieb OR, Sarti JS, Filho DS (1996) Isolation of lignans and sesquiterpenoids from leaves of Zanthoxylum naranjillo. Nat Prod Lett 9:65–70

    CAS  Google Scholar 

  • Bastos JK, Albuquerque S, Silva MLA (1999) Evaluation of the trypanocidal activity of lignans isolated from the leaves of Zanthoxylum naranjillo. Planta Med 65:541–544

    Article  CAS  PubMed  Google Scholar 

  • Bastos JK, Carvalho JCT, Souza GHB, Pedrazzi AHP, Sarti SJ (2001) Anti-inflammatory activity of hinokinin, a lignan from the leaves of Zanthoxyllum naranjillo Griseb. J Ethnopharmacol 75:279–282

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum DT, Kosmala JD, Henthorn DB, Brannon-Peppas (2000) Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release. J Control Release 65(3):375–387

    Article  CAS  PubMed  Google Scholar 

  • Brener Z (1962) Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop São Paulo 4:389–396

    CAS  PubMed  Google Scholar 

  • Causon R (1997) Validation of chromatographic methods in biomedical analysis view point and discussion. J Chromatogr B 689:175–180

    Article  CAS  Google Scholar 

  • Cegnar M, Kristl J, Kos J (2005) Nanoscale polymer carriers to deliver chemotherapeutic agents tumours. Expert Opinion on Biological Therapy 5(12):1557–1569

    Article  CAS  PubMed  Google Scholar 

  • Charlton JL (1998) Antiviral activity of lignans. J Nat Prod 61:1447–1451

    Article  CAS  PubMed  Google Scholar 

  • Clark AM (1996) Natural products as a resource for new drugs. Pharmaceutical Res 13:1133–1141

    Article  CAS  Google Scholar 

  • Croft SL (1997) The current status of antiparasite chemotherapy. Parasitology 114:3–15

    Google Scholar 

  • da Silva R, de Souza GH, da Silva AA, de Souza VA, Pereira AC, Royo VA, Silva ML, Donate PM, de Matos Araújo AL, Carvalho JC, Bastos JK (2005) Synthesis and biological activity evaluation of lignan lactones derived from (−)−cubebin. Bioorg Med Chem Lett 15(4):1033–1037

    Article  PubMed  Google Scholar 

  • de Castro SL (1993) The challenge of Chagas disease chemotherapy: an update of drugs assayed against Trypanosoma cruzi. Acta Trop 53(2):83–98

    Article  PubMed  Google Scholar 

  • de Souza VA, da Silva R, Pereira AC, Royo VA, Saraiva J, Montanheiro M, de Souza GH, da Silva Filho AA, Grando MD, Donate PM, Bastos JK, Albuquerque S, Silva ML (2005) Trypanocidal activity of (−)−cubebin derivatives against free amastigote forms of Trypanosoma cruzi. Bioorg Med Chem Lett 15:303–307

    Article  PubMed  Google Scholar 

  • Docampo R (2001) Recent developments in the chemotherapy of Chagas disease. Curr Pharm Des 7(12):1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Sol State Mater Sci 6:319–327

    Article  CAS  Google Scholar 

  • Heleno VC, da Silva R, Pedersoli S, de Albuquerque S, Bastos JK, Silva ML, Donate PM, da Silva GV, Lopes JL (2006) Detailed 1H and 13C NMR structural assignment of three biologically active lignan lactones. Spectrochim Acta A Mol Biomol Spectrosc 63(1):234–239

    Article  PubMed  Google Scholar 

  • Herrmann J, Bodmeier R (1998) Biodegradable, somatostatin acetate containing microspheres prepared by various aqueous and non-aqueous solvent evaporation methods. Eur J Pharm Biopharm 45(1):75–82

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T (1961) Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci 50:874–875

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T (1963) Mechanism of sustained-action medication. theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Jain RA (2000) The manufacturing techniques of various drug-loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23):2475–2490

    Article  CAS  PubMed  Google Scholar 

  • Lira AA, Rossetti FC, Nanclares DM, Neto AF, Bentley MV, Marchetti JM (2008) Preparation and characterization of chitosan-treated alginate microparticles incorporating all-trans retinoic acid. J Microencapsul 30:1–8

    Google Scholar 

  • Montanari CA, Bolzani VS (2001) Planejamento racional de fármacos baseado em produtos naturais. Química Nova 24:105–111

    Article  CAS  Google Scholar 

  • Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y (1994) In vitro drug release behavior of d,l-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method. J Pharm Sci 83(5):727–732

    Article  CAS  PubMed  Google Scholar 

  • Paulino M, Iribarne F, Dubin M, Aguilera-Morales S, Tapia O, Stoppani AO (2005) The chemotherapy of Chagas disease: an overview. Mini Rev Med Chem 5(5):499–519

    Article  CAS  PubMed  Google Scholar 

  • Piccinelli AL, Mahmood N, Mora G, Poveda L, De Simone F, Rastrelli L (2005) Anti-HIV activity of dibenzylbutyrolactone-type lignans from phenax species endemic in Costa Rica. J Pharm Pharmacol 57:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Ravi Kumar MN (2000) Nano- and microparticles as controlled drug-delivery devices. J Pharm Pharm Sci 3(2):234–58

    CAS  PubMed  Google Scholar 

  • Rodriques Coura J, de Castro SL (2002) A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 97(1):3–24

    PubMed  Google Scholar 

  • Saraiva J, Vega C, Rolon M, da Silva R, Silva ML, Donate PM, Bastos JK, Gomez-Barrio A, de Albuquerque S (2007) In vitro and in vivo activity of lignan lactones derivatives against Trypanosoma cruzi. Parasitol Res 100(4):791–795

    Article  PubMed  Google Scholar 

  • Souza GH, da Silva Filho AA, de Souza VA, Pereira AC, Royo VA, Silva ML, da Silva R, Donate PM, Carvalho JC, Bastos JK (2004) Analgesic and anti-inflammatory activities evaluation of (−)−O-acetyl, (−)−O-methyl, (−)−O-dimethylethylamine (−)−hinokinin and their preparation from (−)−hinokinin. Fármaco 59:55–59

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Tabata Y (2003) Polyhydroxyalkanonate derivatives in current clinical applications and trials. Adv Drug Deliv Rev 55(4):501–518

    Article  CAS  PubMed  Google Scholar 

  • Urbina JA, Docampo R (2003) Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol 19(11):495–501

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2007) Reporte del grupo de trabajo científico sobre la enfermedad de Chagas. Document TDR/SWG/09. http://apps.who.int/tdr/svc/publications/tdr-research-publications/reporte-enfermedad-chagas. Accessed 8 Oct 2009

Download references

Acknowledgments

The authors would like to thank “Centro Nacional de Desenvolvimento Científico e Tecnológico” (Cnpq, Brazil) and ‘‘Fundação de Amparo à Pesquisa do Estado de São Paulo’’ (FAPESP, Brazil) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Maldonado Marchetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saraiva, J., Lira, A.A.M., Esperandim, V.R. et al. (−)−Hinokinin-loaded poly(d,l-lactide-co-glycolide) microparticles for Chagas disease. Parasitol Res 106, 703–708 (2010). https://doi.org/10.1007/s00436-010-1725-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-1725-1

Keywords

Navigation