Skip to main content
Log in

Malate dehydrogenase is negatively regulated by miR-1 in Trichomonas vaginalis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

MicroRNAs are highly conserved small noncoding RNAs that can suppress protein translation through complementary binding to target mRNAs. We used a novel approach to identify miRNA targets in the protist Trichomonas vaginalis by comparing the levels of differentially expressed proteins and genes in the trophozoite and amoeboid stages. We observed that the T. vaginalis malate dehydrogenase (Tv_MDH) gene was upregulated 20-fold in the amoeboid stage, but the protein level was reduced by 4.5-fold. Bioinformatics analysis revealed that the Tv_MDH mRNA contains putative target sites of the miR-1 family. The expression level of endogenous tva-miR-1 in the amoeboid stage was 50-fold higher than in the trophozoite stage. Transfection of trophozoites with tva-miR-1 mimics reduced Tv_MDH protein expression by 60%. Based on these experimental data, we conclude that Tv_MDH is negatively regulated by tva-miR-1. The results of this study demonstrate that a combination of proteomic and transcriptomic approaches is a powerful tool for identifying miRNA targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bagga S, Bracht J et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122(4):553–563

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Bruneau BG (2005) Developmental biology: tiny brakes for a growing heart. Nature 436(7048):181–182

    Article  CAS  PubMed  Google Scholar 

  • Carlton JM, Hirt RP et al (2007) Draft genome sequence of the sexually transmitted pathogen Trichomoinas vaginalis. Science 315(5809):207–212

    Article  PubMed  Google Scholar 

  • Chen JF, Mandel EM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233

    Article  CAS  PubMed  Google Scholar 

  • Crouch ML, Alderete JF (1999) Trichomonas vaginalis interactions with fibronectin and laminin. Microbiology 145(Pt 10):2835–2843

    CAS  PubMed  Google Scholar 

  • Diamond LS, Clark CG et al (1995) YI-S, a casein-free medium for axenic cultivation of Entamoeba histolytica, related Entamoeba, Giardia intestinalis and Trichomonas vaginalis. J Eukaryot Microbiol 42(3):277–278

    Article  CAS  PubMed  Google Scholar 

  • Grad Y, Aach J et al (2003) Computational and experimental identification of C. elegans microRNAs. Mol Cell 11(5):1253–1263

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36(Database issue):D154–D158

    CAS  PubMed  Google Scholar 

  • Grimson A, Farh KK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105

    Article  CAS  PubMed  Google Scholar 

  • Huang KY, Chien KY et al (2009) A proteome reference map of Trichomonas vaginalis. Parasitol Res 104(4):927–933

    Article  PubMed  Google Scholar 

  • Krek A, Grun D et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih IH et al (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JJ, Esser KA (2007) MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 102(1):306–313

    Article  CAS  PubMed  Google Scholar 

  • Miranda KC, Huynh T et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos GL, Reczko M et al (2009) The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res 37(Database issue):D155–D158

    Article  CAS  PubMed  Google Scholar 

  • Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38 Suppl:S8–S13

    Google Scholar 

  • Rao PK, Kumar RM et al (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 103(23):8721–8726

    Article  CAS  PubMed  Google Scholar 

  • Safdar A, Abadi A et al (2009) miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6 J male mice. PLoS ONE 4(5):e5610

    Article  PubMed  Google Scholar 

  • Saraiya AA, Wang CC (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4(11):e1000224

    Article  PubMed  Google Scholar 

  • Selbach M, Schwanhausser B et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    Article  CAS  PubMed  Google Scholar 

  • Sokol NS, Ambros V (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 19(19):2343–2354

    Article  CAS  PubMed  Google Scholar 

  • Lin W-C, Li S-C et al (2009) Identification of microRNA in the protist Trichomonas vaginalis. Genomics 93(5):487–493

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Lu Y et al (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120(Pt 17):3045–3052

    Article  CAS  PubMed  Google Scholar 

  • Yu XY, Song YH et al (2008) Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun 376(3):548–552

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Samal E et al (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048):214–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the Chang Gung Memorial Hospital (CMRPD170481), the National Science Council (NSC-97-2320-B-182-011-MY3), and the Ministry of Education, Taiwan, ROC to Chang Gung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petrus Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, WC., Huang, KY., Chen, SC. et al. Malate dehydrogenase is negatively regulated by miR-1 in Trichomonas vaginalis . Parasitol Res 105, 1683–1689 (2009). https://doi.org/10.1007/s00436-009-1616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1616-5

Keywords

Navigation