Skip to main content

Advertisement

Log in

Schistosoma japonicum: proteomics analysis of differentially expressed proteins from ultraviolet-attenuated cercariae compared to normal cercariae

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Schistosomiasis is considered the most important human helminthiasis in terms of morbidity and mortality. In this study, comparative soluble proteomic analysis of normal cercariae and ultraviolet-irradiated attenuated cercariae (UVAC) from Schistosoma japonicum were carried out in view of the high efficiency of irradiation-attenuated cercariae vaccine. The results revealed that some proteins showed significant differential expression in the parasite after treatment with ultraviolet light. Total 20 protein spots were identified by mass spectrometry, corresponded to five groups according to their functions in the main that were structural and motor proteins (actin, et al.), energy metabolism associated enzymes (glyceraldehydes-3-phosphage dehydrogenase, et al.), signaling transduction pathway-associated molecules (14-3-3 protein, et al.), heat shock protein families (HSP 70 family, et al.), and other functional proteins (20S proteasome). Furthermore, our results indicated that the differential expression of the proteins by ultraviolet irradiation may be, at least partially, acquired by regulating the mRNA levels of corresponding proteins. These results may provide new clues for further exploring the mechanism of protective immunity induced by UVAC and may shed some light on the development of vaccines against schistosomiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anonymous (2002) Prevention and control of schistosomiasis and soil-transmitted helminthiasis. World Health Organ Tech Rep Ser 912(i–vi):1–57, back cover

  • Bergquis NR (1995) Controlling schistosomiasis by vaccination—a realistic option. Parasitol Today 11:191–194

    Article  Google Scholar 

  • Bergquist NR, Colley DG (1998) Schistosomiasis vaccine: research to development. Parasitol Today 14:99–104

    Article  CAS  PubMed  Google Scholar 

  • Bergquist R, Al-Sherbiny M, Barakat R, Olds R (2002) Blueprint for schistosomiasis vaccine development. Acta Trop 82:183–192

    Article  PubMed  Google Scholar 

  • Bruchhaus I, Tannich E (1994) Purification and molecular characterization of the NAD(+)-dependent acetaldehyde/alcohol dehydrogenase from Entamoeba histolytica. Biochem J 303(Pt 3):743–748

    CAS  PubMed  Google Scholar 

  • Cass CL, Johnson JR, Califf LL, Xu T, Hernandez HJ, Stadecker MJ, Yates JR, Williams DL (2007) Proteomic analysis of Schistosoma mansoni egg secretions. Mol Biochem Parasitol 155:84–93

    Article  CAS  PubMed  Google Scholar 

  • Castro-Borges W, Cartwright J, Ashton PD, Braschi S, Guerra Sa R, Rodrigues V, Wilson RA, Curwen RS (2007) The 20S proteasome of Schistosoma mansoni: a proteomic analysis. Proteomics 7:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Charmy RA, el-Kashef HS, el Ghorab NM, Gad HS (1997) Identification of surface tegumental antigens of normal and irradiated schistosomula. J Egypt Soc Parasitol 27:479–491

    CAS  PubMed  Google Scholar 

  • Coulson PS, Wilson RA (2001) Cellular and humoral immune responses and protection against schistosomes induced by a radiation-attenuated vaccine in chimpanzees. Infect Immun 69:5352–5362

    Article  PubMed  Google Scholar 

  • Curwen RS, Ashton PD, Johnston DA, Wilson RA (2004) The Schistosoma mansoni soluble proteome: a comparison across four life-cycle stages. Mol Biochem Parasitol 138:57–66

    Article  CAS  PubMed  Google Scholar 

  • Curwen RS, Ashton PD, Sundaralingam S, Wilson RA (2006) Identification of novel proteases and immunomodulators in the secretions of schistosome cercariae that facilitate host entry. Mol Cell Proteomics 5:835–844

    Article  CAS  PubMed  Google Scholar 

  • De Jong-Brin M (1995) How schistosomes profit from the stress responses they elicit in their hosts. Adv Parasitol 35:177–256

    Article  Google Scholar 

  • Dillon GP, Feltwell T, Skelton J, Coulson PS, Wilson RA, Ivens AC (2008) Altered patterns of gene expression underlying the enhanced immunogenicity of radiation-attenuated schistosomes. PLoS Negl Trop Dis 2:e240

    Article  PubMed  CAS  Google Scholar 

  • Eberl M, Langermans JA, Frost PA, Vervenne RA, van Dam GJ, Deelder AM, Thomas AW, Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    Article  Google Scholar 

  • Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    Article  PubMed  Google Scholar 

  • Guerra-Sa R, Castro-Borges W, Evangelista EA, Kettelhut IC, Rodrigues V (2005) Schistosoma mansoni: functional proteasomes are required for development in the vertebrate host. Exp Parasitol 109:228–236

    Article  CAS  PubMed  Google Scholar 

  • Herbert B, Galvani M, Hamdan M, Olivieri E, MacCarthy J, Pedersen S, Righetti PG (2001) Reduction and alkylation of proteins in preparation of two-dimensional map analysis: why, when, and how? Electrophoresis 22:2046–2057

    Article  CAS  PubMed  Google Scholar 

  • Hewitson JP, Hamblin PA, Mountford AP (2005) Immunity induced by the radiation-attenuated schistosome vaccine. Parasite Immunol 27:271–280

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann KF, Strand M (1996) Molecular identification of a Schistosoma mansoni tegumental protein with similarity to cytoplasmic dynein light chains. J Biol Chem 271:26117–26123

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann KF, Strand M (1997) Molecular characterization of a 20.8-kDa Schistosoma mansoni antigen. Sequence similarity to tegumental associated antigens and dynein light chains. J Biol Chem 272:14509–14515

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Yan Q, Shen DK, Liu F, Zhu ZD, Song HD, Xu XR, Wang ZJ, Rong YP, Zeng LC, Wu J, Zhang X, Wang JJ, Xu XN, Wang SY, Fu G, Zhang XL, Wang ZQ, Brindley PJ, McManus DP, Xue CL, Feng Z, Chen Z, Han ZG (2003) Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat Genet 35:139–147

    Article  PubMed  Google Scholar 

  • Khalife J, Liu JL, Pierce R, Porchet E, Godin C, Capron A (1994) Characterization and localization of Schistosoma mansoni calreticulin Sm58. Parasitology 108(Pt 5):527–532

    Article  PubMed  Google Scholar 

  • Knudsen GM, Medzihradszky KF, Lim KC, Hansell E, McKerrow JH (2005) Proteomic analysis of Schistosoma mansoni cercarial secretions. Mol Cell Proteomics 4:1862–1875

    Article  CAS  PubMed  Google Scholar 

  • Kusel JR, Wales A, Vieira L, Wu KY (1989) Effects of irradiation and tunicamycin on the surface glycoproteins of Schistosoma-mansoni. Mem Inst Oswaldo Cruz 84:199–205

    Article  PubMed  Google Scholar 

  • Liu F, Lu J, Hu W, Wang SY, Cui SJ, Chi M, Yan Q, Wang XR, Song HD, Xu XN, Wang JJ, Zhang XL, Zhang X, Wang ZQ, Xue CL, Brindley PJ, McManus DP, Yang PY, Feng Z, Chen Z, Han ZG (2006) New perspectives on host–parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathog 2:e29

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loeffler IK, Bennett JL (1996) A rab-related GTP-binding protein in Schistosoma mansoni. Mol Biochem Parasitol 77:31–40

    Article  CAS  PubMed  Google Scholar 

  • Mair GR, Maule AG, Fried B, Day TA, Halton DW (2003) Organization of the musculature of schistosome cercariae. J Parasitol 89:623–625

    Article  CAS  PubMed  Google Scholar 

  • Maresca B, Carratu L (1992) The biology of the heat shock response in parasites. Parasitol Today 8:260–266

    Article  CAS  PubMed  Google Scholar 

  • Mortz E, Krogh TN, Vorum H, Gorg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359–1363

    Article  CAS  PubMed  Google Scholar 

  • Mountford AP, Harrop R (1998) Vaccination against schistosomiasis: the case for lung-stage antigens. Parasitol Today 14:109–114

    Article  CAS  PubMed  Google Scholar 

  • Neumann S, Ziv E, Lantner F, Schechter I (1993) Regulation of HSP70 gene expression during the life cycle of the parasitic helminth Schistosoma mansoni. Eur J Biochem 212:589–596

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M, Wilk S (2003) Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys 415:1–5

    Article  CAS  PubMed  Google Scholar 

  • Riengrojpitak S, Anderson S, Wilson RA (1998) Induction of immunity to Schistosoma mansoni: interaction of schistosomula with accessory leucocytes in murine skin and draining lymph nodes. Parasitology 117(Pt 4):301–309

    Article  PubMed  Google Scholar 

  • Ruppel A, Shi YE, Moloney NA (1990) Schistosoma mansoni and S. japonicum: comparison of levels of ultraviolet irradiation for vaccination of mice with cercariae. Parasitology 101:23–26

    Article  PubMed  Google Scholar 

  • Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  CAS  PubMed  Google Scholar 

  • Shi YE, Jiang CF, Han JJ, Li YL, Ruppel A (1990) Schistosoma japonicum: an ultraviolet-attenuated cercarial vaccine applicable in the field for water buffaloes. Exp Parasitol 71:100–106

    Article  CAS  PubMed  Google Scholar 

  • Shi YE, Jiang CF, Han JJ, Li YL, Ruppel A (1993) Immunization of pigs against infection with Schistosoma japonicum using ultraviolet-attenuated cercariae. Parasitology 106(Pt 5):459–462

    Article  PubMed  Google Scholar 

  • Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2(3):185–194

    Article  CAS  PubMed  Google Scholar 

  • Szumlewicz AP, Olivier LJ (1963) Schistosoma mansoni: development of challenge infections in mice exposed to irradiated cercariae. Science 140:411–412

    Article  CAS  PubMed  Google Scholar 

  • Todryk SM, Melcher AA, Dalgleish AG, Vile RG (2000) Heat shock proteins refine the danger theory. Immunology 99(3):334–337

    Article  CAS  PubMed  Google Scholar 

  • Torben W, Hailu A (2007) Serum cytokines of the 20 Krad-irradiated S. mansoni cercariae vaccinated, primary and superinfected Cercopethicus aethiops aethiops. Exp Parasitol 115:121–126

    Article  CAS  PubMed  Google Scholar 

  • Villella JB, Gomberg HJ, Gould SE (1961) Immunization to Schistosoma mansoni in mice inoculated with radiated cercariae. Science 134:1073–1075

    Article  CAS  PubMed  Google Scholar 

  • Wales A, Kusel JR (1992) Biochemistry of irradiated parasite vaccines—suggested models for their mode of action. Parasitol Today 8:358–363

    Article  CAS  PubMed  Google Scholar 

  • Wales A, Kusel JR, Jones JT (1992) Inhibition of protein-synthesis in irradiated larvae of Schistosoma-mansoni. Parasite Immunol 14:513–530

    Article  CAS  PubMed  Google Scholar 

  • Wiest PM, Burnham DC, Olds GR, Bowen WD (1992) Developmental expression of protein kinase C activity in Schistosoma mansoni. Am J Trop Med Hyg 46:358–365

    CAS  PubMed  Google Scholar 

  • Zugel U, Kaufmann SH (1999) Immune response against heat shock proteins in infectious diseases. Immunobiology 201(1):22–35

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank Dr. Bernd Kalinna from the University of Melbourne for revising the manuscript. These experiments comply with the current laws of the China and supported by grants from the National Natural Science Foundation of China (grant no. 30771888), Specialized Research Fund for the Doctoral Program of Higher Education (grant no. 20050558069), China Postdoctoral Science Foundation (no. 20060390748), National High-Tech Research and Development Program of China (863 Program; grant no. 2006AA02Z444, 2007AA02Z153), and Project of Basic Platform for National Science and Technology Resources of the Ministry of Sciences and Technology of China (grant no. 2005 DKA21104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-dao Wu.

Additional information

Lin-lin Yang and Zhi-yue Lv made the same contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Ll., Lv, Zy., Hu, Sm. et al. Schistosoma japonicum: proteomics analysis of differentially expressed proteins from ultraviolet-attenuated cercariae compared to normal cercariae. Parasitol Res 105, 237–248 (2009). https://doi.org/10.1007/s00436-009-1387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1387-z

Keywords

Navigation