Skip to main content

Advertisement

Log in

Effect of dequalinium on the oxidative stress in Plasmodium berghei-infected erythrocytes

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The bisquinoline drug dequalinium (DQ) has demonstrated remarkable activity against some infection diseases, including malaria. Oxidative stress represents a biochemical target for potential antimalarials. In this work, we have tested the ability of this compound to modify the oxidative status in Plasmodium berghei-infected erythrocytes. After hemolysis, activities of superoxide dismutase (SOD), catalase (CAT), glutathione cycle, and dehydrogenase enzymes were investigated. The activity of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGLD) in infected cells were diminished by this drug compared to controls (300% and 80% approximately, respectively), while glutathione peroxidase (GPx), glutathione transferase (GST), and glutathione levels were also lowered. As a compensatory response, we could appreciate an increase of SOD activity (20% approximately) in infected cells treated with DQ; however, catalase was not affected by the compound. Lipid peroxidation was also decreased by this drug, protecting the cells from the hemolysis caused by the infection. In conclusion, oxidative stress represents a biochemical event which is modulated by DQ, interfering with the antioxidant regular activities in P. berghei infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 103:121–126

    Article  Google Scholar 

  • Areekul S, Boonme Y (1986) Catalase activity in red cell and liver of mice infected with Plasmodium berghei. Southeast Asian J Trop Med Public Health 17:48–52

    CAS  PubMed  Google Scholar 

  • Atamna H, Ginsburg H (2005) Heme degradation in the presence of glutathione. J Biol Chem 27:24876–24883

    Google Scholar 

  • Becker K, Tilley L, Vennerstrom DR, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34:163–189

    Article  CAS  PubMed  Google Scholar 

  • Bendrat K, Berger BJ, Cerami A (1995) Haem polymerization in malaria. Nature 378:138

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassl M (1974) Glucose-6-phosphate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic Analysis vol. 2. Academic, New York, pp 458–459

    Google Scholar 

  • Bernt E, Bergmeyer HU (1974) Isocitrate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis vol. 2. Academic, New York, pp 624–631

    Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52C:302–310

    Article  Google Scholar 

  • Das BS, Nanda NK (1999) Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans R Soc Trop Med Hyg 93:58–62

    Article  CAS  PubMed  Google Scholar 

  • Della Casa V, Noll H, Gonser S, Grob P, Graf F, Pohlig G (2002) Antimicrobial activity of dequalinium chloride against leading germs of vaginal infections. Arzneimittelforschung 52:699–705

    CAS  PubMed  Google Scholar 

  • Farombi EO, Shyntum YY, Emerole GO (2003) Influence of chloroquine treatment and Plasmodium falciparum malaria infection on some enzymatic and non-enzymatic antioxidant defense indices in humans. Drug Chem Toxicol 26:59–71

    Article  CAS  PubMed  Google Scholar 

  • Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 77:398–404

    Google Scholar 

  • Francis SE, Sullivan DJ Jr, Goldberg DE (1997) Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 51:97–123

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg H, Atamna H (1994) The redox status of malaria-infected erythrocytes: an overview with an emphasis on unresolved problems. Parasite 1:5–13

    CAS  PubMed  Google Scholar 

  • Goldberg DE, Slater AF, Cerami A, Henderson GB (1990) Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle. Proc Natl Acad Sci U S A. 87:2931–2935

    Article  CAS  PubMed  Google Scholar 

  • Greenwod B, Mutabingwa T (2002) Malaria in 2002. Nature 415:670–678

    Article  Google Scholar 

  • Griffiths MJ, Ndungu F, Baird KL, Muller DPR, Marsh K (2001) Oxidative stress and erythrocyte damage in Kenya children with severe Plasmodium falciparum malaria. Br J Haematol 113:486–491

    Article  CAS  PubMed  Google Scholar 

  • Harwaldt P, Rahlfs S, Becker K (2002) Glutathione-S-transferase of the malarial parasite Plasmodium falciparum: characterization of a potential drug target. Biol Chem 383:821–830

    Article  CAS  PubMed  Google Scholar 

  • Hbig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Google Scholar 

  • Kaufman AY (1981) The use of dequalinium acetate as a disinfectant and chemotherapeutic agent in endodontics. Oral Surg Oral Med Oral Pathol 51:434–441

    Article  CAS  PubMed  Google Scholar 

  • King J (1974) 6-Phosphogluconate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis vol. 2. Academic, New York, pp 632–635

    Google Scholar 

  • Loria P, Miller S, Folley M, Tilley L (1999) Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem J 339:363–370

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lüersen K, Walter RD, Müller S (2000) Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione. Biochem J 346:545–552

    Article  PubMed  Google Scholar 

  • Makler MT (1990) Dequalinum salts for the treatment of malaria. (Flow, Inc., USA). U.S. Patent 4.946.849

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6053

    CAS  PubMed  Google Scholar 

  • Omodeo-Salé F, Motti A, Basilico N, Parapini S, Olliaro P, Taramelli D (2003) Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum. Blood 102:705–711

    Article  PubMed  Google Scholar 

  • Rodrigues J, Gamboa N (2007) Plasmodium berghei: in vitro and in vivo activity of Dequalinium. Exp Parasitol 115:19–24

    Article  CAS  PubMed  Google Scholar 

  • Sancho P, Galeano E, Nieto E, Delgado MD, García-Pérez AL (2007) Dequalinium induces cell death in human leukemia cells by early mitochondrial alterations which enhance ROS production. Leuk Res 31:969–978

    Article  CAS  PubMed  Google Scholar 

  • Shakespare PG, Trigg PI, Kyd SI, Tappenden L (1979) Glucose metabolism in the simian malaria parasite Plasmodium knowlesi: activities of the glycolytic and pentose phosphate pathways during the intraerythrocytic cycle. Ann Trop Med Parasitol 73:407–415

    Google Scholar 

  • Srivastava P, Puri SK, Dutta GP, Pandey VC (1992) Status of oxidative stress and antioxidant defences during Plasmodium knowlesi infection and chloroquine treatment in Macaca mulatta. Int J Parasitol 22:243–245

    Article  CAS  PubMed  Google Scholar 

  • Tietze F (1969) Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Anal Biochem 27:502–522

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Neuropeptide Laboratory, School of Pharmacy, Central University of Venezuela, for the disposition of the microplate spectrophotometer. This work was supported by Consejo de Desarrollo Científico y Humanístico (CDCH), Universidad Central de Venezuela (Grants PG-CDCH-06.30.5125-2003). The experiments complied with the current laws in Venezuela.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan R. Rodrigues or Neira D. Gamboa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, J.R., Gamboa, N.D. Effect of dequalinium on the oxidative stress in Plasmodium berghei-infected erythrocytes. Parasitol Res 104, 1491–1496 (2009). https://doi.org/10.1007/s00436-009-1355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1355-7

Keywords

Navigation