Skip to main content
Log in

Skin-scale genetic structure of Sarcoptes scabiei populations from individual hosts: empirical evidence from Iberian ibex-derived mites

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The objective of the present study was to examine the extent of genetic diversity among Sarcoptes scabiei individuals belonging to different skin subunits of the body from individual mangy hosts. Ten microsatellite primers were applied on 44 individual S. scabiei mites from three mangy Iberian ibexes from Sierra Nevada Mountain in Spain. Dendrograms of the mites from the individual Iberian ibexes, showing the proportion of shared alleles between pairs of individual mites representing three skin subpopulations (head, back, and abdomen subunits), allowed the clustering of some mite samples up to their skin subunits. This genetic diversity of S. scabiei at skin-scale did not have the same pattern in all considered hosts: for the first Iberian ibex (Cp1), only mites from the head subunit were grouped together; in the second individual (Cp2), the clustering was detected only for mites from the abdomen subunit; and for the third one (Cp3), only mites from the back subunit were clustered together. Our results suggest that the local colonization dynamics of S. scabiei would have influenced the nonrandom distribution of this ectoparasite, after a single infestation. Another presumable explanation to this skin-scale genetic structure could be the repeated infestations. To our knowledge, this is the first documentation of genetic structuring among S. scabiei at individual host skin-scale. Further studies are warranted to highlight determining factors of such trend, but the pattern underlined in the present study should be taken into account in diagnosis and monitoring protocols for studying the population genetic structure and life cycle of this neglected but important ectoparasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alasaad S, Granados JE, Cano-Manuel FJ, Meana A, Zhu XQ, Pérez JM (2008a) Epidemiology of fasciolosis affecting Iberian ibex (Capra pyrenaica) in southern Spain. Parasitol Res 103:181–186

    Article  PubMed  CAS  Google Scholar 

  • Alasaad S, Rossi L, Maione S, Sartore S, Soriguer RC, Pérez JM, Rasero R, Zhu XQ, Soglia D (2008b) HotSHOT Plus ThermalSHOCK, a new and efficient technique for preparation of PCR-quality Sarcoptes mite genomic DNA. Parasitol Res (in press)

  • Berrilli F, D’Amelio S, Rossi L (2002) Ribosomal and mitochondrial DNA sequence variation in Sarcoptes mites from different hosts and geographical regions. Parasitol Res 88:772–777

    Article  PubMed  CAS  Google Scholar 

  • Brimer L, Henriksen SA, Gyrd-Hansen N, Rasmussen F (1993) Evaluation of an in vitro method for acaricidal effect. Activity of parathion, phosmet and phoxim against Sarcoptes scabiei. Vet Parasitol 51:123–135

    Article  PubMed  CAS  Google Scholar 

  • Burgess I (1994) Sarcoptes scabiei and scabies. Adv Parasitol 33:235–292

    Article  PubMed  CAS  Google Scholar 

  • Choe JC, Kim CK (1988) Microhabitat preference and coexistence of ectoparasitic arthropods on Alaskan seabirds. Can J Zool 66:987–997

    Google Scholar 

  • Clayton DH (1991) Coevolution of avian grooming and ectoparasite avoidance. In: Loye JE, Zuk M (eds) Bird-parasite interactions: ecology, evolution and behaviour. Oxford University Press, Oxford, pp 258–289

    Google Scholar 

  • Coltman DW, Pilkington JG, Pemberton JM (2003) Fine-scale genetic structure in a free-living ungulate population. Mol Ecol 12:733–742

    Article  PubMed  CAS  Google Scholar 

  • Coulon A, Guillot G, Cosson JF, Angibault JMA, Aulagnier S, Cargnelutti B, Galan M, Hewison AJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679

    Article  PubMed  CAS  Google Scholar 

  • Crompton DWT (1997) Birds as habitat for parasites. In: Clayton DH, Moore J (eds) Host–parasite evolution: general principles and avian models. Oxford University Press, Oxford, pp 252–270

    Google Scholar 

  • Fain A (1968) Étude de la variabilité de Sarcoptes scabiei avec une revisiondes Sarcoptidae. Acta Zool Pathol Antverp 47:1–196

    Google Scholar 

  • Felsenstein J (1989) PHYLIP - Phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Glaubitz J (2004) CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310

    Article  CAS  Google Scholar 

  • Gu XB, Yang GY (2008) A study on the genetic relationship of mites in the genus Sarcoptes (Acari: Sarcoptidae) in China. Int J Acarol 32:183–190

    Article  Google Scholar 

  • Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K, Taylor C, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101

    Article  Google Scholar 

  • Hughes C (1998) Integrating molecular techniques with field methods in studies of social behavior: a revolution results. Ecology 79:383–399

    Article  Google Scholar 

  • Kanno H, Harris MO (2002) Avoidance of occupied hosts by the Hessian fly: oviposition behaviour and consequences for larval survival. Ecol Entomol 27:177–188

    Article  Google Scholar 

  • León-Vizcaíno L, Ruíz de Ybáñez MR, Cubero MJ (1999) Sarcoptic mange in Spanish ibex from Spain. J Wildl Dis 35:647–659

    PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mellanby K (1944) The development of symptoms, parasitic infection and immunity in human scabies. Parasitology 35:197–206

    Google Scholar 

  • Minch E (1997) http://hpgl.stanford.edu/projects/microsat/

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  Google Scholar 

  • Ochs H, Mathis A, Deplazes P (1999) Single nucleotide variation in rDNA ITS-2 differentiates Psoroptes isolates from sheep and rabbits from the same geographical area. Parasitology 119:419–424

    Article  PubMed  CAS  Google Scholar 

  • Pence DB, Ueckermann E (2002) Sarcoptic mange in wildlife. Rev Sci Tech Off int Epiz 21(2):385–398

    CAS  Google Scholar 

  • Pérez JM, Ruíz-Martínez I, Granados JE, Soriguer RC, Paulino F (1997) The dynamics of sarcoptic mange in the ibex population of Sierra Nevada in Spain - influence of climatic factors. J Wildl Res 2:86–89

    Google Scholar 

  • Pérez JM, Granados JE, Soriguer RC, Fandos P, Márquez FJ, Crampe JP (2002) Distribution, status and conservation problems of the Spanish ibex, Capra pyrenaica (Mammalia: Artiodactyla). Mammal Rev 32:26–39

    Article  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: A software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  • Ross KG (2001a) Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol Ecol 10:265–284

    Article  PubMed  CAS  Google Scholar 

  • Ross KG (2001b) How to measure dispersal: the genetic approach. The example of fire ants. In: Clobert J, Danchein E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, pp 29–42

    Google Scholar 

  • Soglia D, Rasero R, Rossi L, Sartore S, Sacchi P, Maione S (2007) Microsatellites as markers for comparison among different populations of Sarcoptes scabiei. It J Anim Sci 7:214–216

    Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

    Article  PubMed  CAS  Google Scholar 

  • Sugg DW, Chesser RK, Dobson FS, Hoogland JL (1996) Population genetics meets behavioral ecology. Trends Ecol Evol 11:338–342

    Article  Google Scholar 

  • Trooskens G, De Beule D, Decouttere F, Van Criekinge W (2005) http://nexus.ugent.be/geert/

  • Walton SF, Currie BJ (2007) Problems in diagnosing scabies, a global disease in human and animal populations. Clin Microbiol Rev 20:268–279

    Article  PubMed  Google Scholar 

  • Walton SF, Currie BJ, Kemp DJ (1997) A DNA fingerprinting system for the ectoparasite Sarcoptes scabiei. Mol Biochem Parasitol 85:187–196

    Article  PubMed  CAS  Google Scholar 

  • Walton SF, Choy JL, Bonson A, Valle A, McBroom J, Taplin D, Arlian L, Mathews JD, Currie B, Kemp DJ (1999) Genetically distinct dog-derived and human-derived Sarcoptes scabiei in scabies-endemic communities in northern Australia. Am J Trop Med Hyg 61:542–547

    PubMed  CAS  Google Scholar 

  • Walton SF, Holt DC, Currie BJ, Kemp DJ (2004) Scabies: New future for a neglected disease. Adv Parasitol 57:309–376

    Article  PubMed  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, Vol. IV: Variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Zahler M, Essig A, Gothe R, Rinder H (1999) Molecular analyses suggest monospecificity of the genus Sarcoptes (Acari: Sarcoptidae). Int J Parasitol 29:759–766

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help of the guards of the hunting reserve of Sierra Nevada Natural Space, and RNM118 investigation group (Junta de Andalucía-Spain) for supporting SA’s investigation stay in Italy. The study was supported by MURST contract year 2004, Prot. 2004078701 001 (LR) and a grant by SCI Italian Chapter. XQZ was supported by a grant from the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT0723) and the Natural Science Foundation of Guangdong Province (Team Project, Grant no. 5200638). The experiments comply with the current laws of the countries in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Q. Zhu or L. Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alasaad, S., Soglia, D., Sarasa, M. et al. Skin-scale genetic structure of Sarcoptes scabiei populations from individual hosts: empirical evidence from Iberian ibex-derived mites. Parasitol Res 104, 101–105 (2008). https://doi.org/10.1007/s00436-008-1165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-008-1165-3

Keywords

Navigation