Skip to main content

Advertisement

Log in

Spatial modelling of the potential temperature-dependent transmission of vector-associated diseases in the face of climate change: main results and recommendations from a pilot study in Lower Saxony (Germany)

  • Mosquitoes
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The sustained climate change is going to modify the geographic distribution, the seasonal transmission gate and the intensity of the transmission of vector-borne diseases such as malaria or the bluetongue disease. These diseases occur nowadays at higher latitudes or altitudes. A further rise in ambient temperature and rainfall will extend the duration of the season in which mosquito vectors are transmitting pathogens. The parasites transmitted by the vectors also benefit from increasing temperatures, as both their reproduction and development are then accelerated, too. Thus, it seemed prudent to examine potential effects on the seasonal transmission gate due to the ongoing and predicted climate changes. Lower Saxony (northwest Germany) is a former malaria region with highest incidences of Anopheles atroparvus and tertian malaria along the coastal zones before malaria had finally become extinct in the early 1950s. Nevertheless, the Anopheles mosquitoes which transmit the malaria pathogens have still been present in Lower Saxony up to now. This together with the climate change-related implications gave reason to investigate whether a new autochthonous transmission could take place if the malaria pathogen is introduced again in Lower Saxony. Thus, the potential spatial and temporal structure of temperature-driven malaria transmissions was mapped using the basic reproduction rate (R 0) and measured and predicted air temperatures (1947–1960, 1961–1990, 1985–2004, 2020, 2060, 2100, each best case and worst case scenario). This paper focuses on both the summarizing of the results from this risk modelling approach and on the conclusions to be drawn. The recommendations highlight the need to link vector monitoring as one of the key elements of an epidemiological monitoring with the environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RM, May RM (1991) Infectious diseases of humans: Dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Bailey NTJ (1982) The biomathematics of malaria. Biomathematics of diseases 1. Griffin, London

    Google Scholar 

  • Baylis M, Bouayoune H, Touti J, Hasnaoui HEL (1998) Use of climatic data and satellite imagery to model the abundance of Culicoides imicola, the vector of African horse sickness virus, in Morocco. Med Vet Entomol 12:255–266

    Article  PubMed  CAS  Google Scholar 

  • Becker K, Müssig-Zufika M, Conrad A, Lüdecke A, Schulz C, Seiwert M, Kolossa-Gehring M, (2008) German environmental survey for children 2003/06—GerES IV—human biomonitoring. levels of selected substances in blood and urine of children in Germany. WaBoLu-Hefte 01/08 (ISSN 1862-4340. Environmental research of Federal Ministry of the Environment, Nature Conservation and Nuclear Safety, Research Report 202 62 219, UBA-FB 001026 by Federal Environment Agency/Umweltbundesamt, Dessau-Roßlau, and Robert Koch-Institut/RKI, Berlin. On behalf of the Federal Environment Agency)

  • Brookmeyer R, Stroup D (2004) Monitoring the health of populations: statistical principles and methods for public health surveillance. Oxford University Press, New York

    Google Scholar 

  • Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786

    Article  PubMed  CAS  Google Scholar 

  • Dietz K (1993) The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res 2:23–41

    Article  PubMed  CAS  Google Scholar 

  • Dreesmann M (2004) Geoservices. Kurzdokumentation von OGC basierten Geoservices, GIB, Potsdam

  • Eritja R, Aranda C, Padrós J, Goula M, Lucientes J, Escosa R, Marquès E, Cáceres F (2000) An annotated checklist and bibliography of the mosquitoes of Spain (Diptera: Culicidae). Eur Mosq Bull 8:11–42

    Google Scholar 

  • Estrada-Pena A (1998) Geostatistics and remote sensing as predictive tools of tick distribution: a cokriging system to estimate Ixodes scapularis (Acari: Ixodidae) habitat suitability in the United States and Canada from advanced very high resolution radiometer satellite imagery. J Med Entomol 35:989–995

    PubMed  CAS  Google Scholar 

  • Gemperli A, Vounatsou P, Sogoba N, Smith T (2006) Malaria mapping using transmission models. Application to survey data from Mali. Am J Epidemiol 163:289–297

    Article  PubMed  CAS  Google Scholar 

  • Gill CA (1921) The role of meteorology on malaria. Indian J Med Res 8:633–693

    Google Scholar 

  • Gill CA (1923) The prediction of malaria epidemics. Indian J Med Res 10:1136–1143

    Google Scholar 

  • Gimnig JE, Hightower AW, Hawley WA (2005) Application of geographic information systems to the study of the ecology of mosquitoes and mosquito-borne diseases. In: Takken W, Martens P, Bogers RJ (eds) Environmental change and malaria risk. Global and local implications. Springer, Dordrecht, pp 15–26

    Google Scholar 

  • Glass GE, Amerasinghe FP, Morgan JM, Scott TW (1994) Predicting Ixodes scapularis abundance on white-tailed deer using geographic information systems. Am J Trop Med Hyg 51:538–544

    PubMed  CAS  Google Scholar 

  • Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, Myers MF, Snow RW (2002) Climate change: regional warming and malaria resurgence-reply. Nature 420:628–628

    Article  CAS  Google Scholar 

  • Hendrickx G, Biesemans J, de Deken R (2004) The use of GIS in veterinary parasitology. In: Durr PA, Gatrell AC (eds) GIS and spatial analysis in veterinary science. CABI, Wallingford

    Google Scholar 

  • Hoshen MB, Morse AP (2005) A model structure for estimating malaria risk. In: Takken W, Martens P, Bogers RJ (eds) Environmental change and malaria risk: global and local implications. Springer, Dordrecht, pp 41–50

    Chapter  Google Scholar 

  • IPCC (Intergovernmental Panel of Climate Change) (2001) Climate change. The scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jetten TH, Takken W (1994) Anophelism without malaria. Agricultural Univ. Papers 94, Wageningen

  • Kampen H, Kiel E, Schröder W (2007) Blauzungenkrankheit in Deutschland 2006. Epizootiologischer Hintergrund, entomologische Analyse und notwendige Konsequenzen. UWSF Z Umweltchem Ökotox 19:37–46

    Google Scholar 

  • Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC (2000) A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62:535–544

    PubMed  CAS  Google Scholar 

  • Kitron U (2000) Risk maps: transmission and burden of vector-borne diseases. Parasitol Today 16:324–325

    Article  PubMed  CAS  Google Scholar 

  • Kitron U, Pener H, Costin C, Orshan L, Greenberg Z, Shalom U (1994) Geographic information system in malaria surveillance: mosquito breeding and imported cases in Israel, 1992. Am J Trop Med Hyg 50:550–556

    PubMed  CAS  Google Scholar 

  • Kleinschmidt I, Bagayoko M, Clarke GPY, Craig M, Le Sueur D (2000) A spatial statistical approach to malaria mapping. Int J Epidemiol 29:355–361

    Article  PubMed  CAS  Google Scholar 

  • Korduan P, Zehner ML (2008) Geoinformation im Internet. Technologien zur Nutzung raumbezogener Informationen im WWW. Wichmann, Heidelberg

    Google Scholar 

  • Krüger A, Rech A, Su XZ, Tannich E (2001) Two cases of autochthonous Plasmodium falciparum malaria in Germany with evidence for local transmission by indigenous Anopheles plumbeus. Trop Med Int Help 6:983–985

    Article  Google Scholar 

  • Kubica-Biernat B (1999) Distribution of mosquitoes (Diptera: Culicidae) in Poland. Eur Mosq Bull 5:1–17

    Google Scholar 

  • Lindsay SW, Parson L, Thomas CJ (1998) Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc Roy Soc Lond B Biol Sci 265:847–854

    Article  CAS  Google Scholar 

  • Lindsay SW, Thomas CJ (2001) Global warming and risk of vivax malaria in Great Britain. Glob Change Hum Health 2:80–84

    Article  Google Scholar 

  • Maier WA, Grunewald J, Habedank B, Hartelt K, Kampen H, Kimmig P, Naucke T, Oehme R, Vollmer A, Schöler A, Schmitt C (2003) Mögliche Auswirkungen von Klimaveränderung auf die Ausbreitung von primär humanmedizinisch relevanten Krankheitserregern über tierische Vektoren sowie auf die wichtigen Humanparasiten in Deutschland. Climate Change 05/03, Umweltbundesamt, Berlin

  • Martens P, Kovats RS, Nijhof S, de Vries P, Livermore MTJ, Bradley DJ, Cox J, McMichael AJ (1999) Climate change and future population at risk of malaria. Glob Environ Change 9:89–107

    Article  Google Scholar 

  • Martens P, Thomas C (2005) Climate change and malaria risk: complexity and scaling. In: Takken W, Martens P, Bogers RJ (eds) Environmental change and malaria risk. Global and local implications. Springer, Dordrecht, pp 3–14

    Chapter  Google Scholar 

  • Martin PH, Lefebvre MG (1995) Malaria and climate: sensitivity of malaria potential transmission to climate. Ambio 24:200–207

    Google Scholar 

  • Mühlberger N, Jelinek T, Gascon J, Probst M, Zoller T, Schunk M, Beran J, Gjørup I, Behrens RH, Clerinx J, Björkman A, McWhinney P, Matteelli A, Lopez-Velez R, Bisoffi Z, Hellgren U, Puente S, Schmid ML, Myrvang B, Holthoff-Stich ML, Laferl H, Hatz C, Kollaritsch H, Kapaun A, Knobloch J, Iversen J, Kotlowski A, Malvy DJM, Kern P, Fry G, Siikamaki H, Schulze MH, Soula G, Paul M, Gómez i Prat J, Lehmann V, Bouchaud O, da Cunha S, Atouguia J, Boecken G (2004) Epidemiology and clinical features of vivax malaria imported to Europe: Sentinel surveillance data from TropNetEurop. Malaria J 3:5

    Article  Google Scholar 

  • Mühlens P (1930) Malaria. Neue Deutsche Klinik. Handwörterbuch der Praktischen Medizin mit besonderer Berücksichtigung der Inneren Medizin, der Kinderheilkunde und ihrer Grenzgebiete VII (31):122–149

  • Müller M, Augstein B (2005) Das Hamburger Umweltinformationssystem HUIS—integration von Umweltdaten auf Basis eines GDI-Ansatzes. In: Fischer-Stabel P (Hrsg) Umweltinformationssysteme. Wichmann, Heidelberg, pp. 246–263

  • Patz JA, Hulme M, Rosenzweig C, Mitchell TD, Goldberg RA, Githeko AK, Lele S, McMichael AJ, Le Sueur D (2002) Climate change: regional warming and malaria resurgence. Nature 420:627–628

    Article  PubMed  CAS  Google Scholar 

  • Peng ZR, Tsou MH (2003) Internet GIS: Distributed geographic information services for the internet and wireless networks. Wiley, Hoboken, NJ

    Google Scholar 

  • Reiter P (2000) Malaria and global warming in perspective? Emerg Infect Dis 6:438–439

    Article  PubMed  CAS  Google Scholar 

  • Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289:1763–1766

    Article  PubMed  CAS  Google Scholar 

  • Romi R, Pierdominici G, Severini C, Tamburo A, Cocchi M, Menichetti D, Pili E, Marchi A (1997) Status of malaria vectors in Italy. J Med Entomol 34:263–271

    PubMed  CAS  Google Scholar 

  • Schaffner F (1998) A revised checklist of French mosquitoes. Eur Mosq Bull 2:1–9

    Google Scholar 

  • Schmidt G, Schröder W (2007): Flächenhafte Szenarien zur potenziellen Ausbreitung von Malaria vivax in Niedersachsen in Abhängigkeit steigender Lufttemperaturen. In: Strobl J, Blaschke Th, Griesebner G (Hrsg): Angewandte Geoinformatik 2007. Beiträge zum 19. Agit-Symposium: 670–680

  • Schröder W (2006) GIS, geostatistics, metadata banking, and tree-based models for data analysis and mapping in environmental monitoring and epidemiology. Int J Med Microbiol 296(Suppl 40):23–36

    Article  PubMed  Google Scholar 

  • Schröder W, Schmidt G (2007) Vektorassoziierte Krankheiten im Klimawandel: Risiken in einem ehemals endemischen Malariagebiet Nordwest-Deutschlands? GIS Business 10:12–20

    Google Scholar 

  • Schröder W, Bast H, Pesch R, Schmidt G, Kiel E (2007a) Flächenhafte Modellierung der potenziellen Reproduktionsrate des Malaria-Erregers Plasmodium vivax in Anopheles atroparvus auf Grundlage gemessener und prognostizierter Lufttemperaturen in Niedersachsen. UWSF – Z Umweltchem Ökotox 19:115–122

    Google Scholar 

  • Schröder W, Schmidt G, Bast H, Pesch R, Kiel E (2007b) Pilot-study on GIS-based risk modelling of a climate warming induced tertian malaria outbreak in Lower Saxony (Germany). Environ Monit Assess 133:483–493

    Article  PubMed  Google Scholar 

  • Schröder W, Schmidt G, Hasenclever J (2005) Bioindication of climate change by means of mapping plant phenology on a regional scale. A geostatistically based correlation analysis of data on air temperature and phenology by the example of Baden-Württemberg (Germany). Environ Monit Assess 130:27–43

    Google Scholar 

  • Schröder W, Schmidt G, Hornsmann I (2006) Landschaftsökologische Raumgliederung Deutschlands. In: Fränzle O, Müller F, Schröder W (Eds) Handbuch der Umweltwissenschaften. Grundlagen und Anwendungen der Ökosystemforschung. ecomed, München, Kap. V-1.9, 17. Erg.Lfg.:1–100

  • Small J, Goetz SJ, Hay SI (2003) Climatic suitability for malaria transmission in Africa 1911–1995. Proc Natl Acad Sci USA 100:15341–15345

    Article  PubMed  CAS  Google Scholar 

  • Smith DL, McKenzie FE (2004) Statics and dynamics of malaria infection in Anopheles mosquitoes. Malaria J 3:13

    Article  Google Scholar 

  • Snow RW, Gouws E, Omumbo J, Rapuoda B, Craig MH, Tanser FC, le Suer D, Ouma J (1998) Models to predict the intensity of Plasmodium falciparum transmission: applications to the burden of disease in Kenya. Trans Roy Soc Trop Med H 92:601–606

    Article  CAS  Google Scholar 

  • Snow RW, Ikoku A, Omumbo J, Ouma J (1999) The epidemiology, politics and control of malaria epidemics in Kenya: 1900–1998. Roll Back Malaria. Resource network on epidemics. World Health Organisation, Nairobi

    Google Scholar 

  • Spath D, Günther J (2005) Open Source Software—Strukturwandel oder Strohfeuer?—Eine empirische Studie zu Trends und Entwicklungen zum Einsatz von Open Source Software in der öffentlichen Verwaltung und IT-Unternehmen in Deutschland. http://www.iao.fraunhofer.de/d/oss_studie.pdf

  • Takken W, Martens P, Bogers R J (Eds) (2005) Environmental change and malaria risk. Global and local implications. Springer, Dordrecht

  • Teutsch SM, Churchill RE (1994) Principles and practice of public health surveillance. Oxford University Press, New York

    Google Scholar 

  • Wakefield JC, Best NG, Waller L (2000) Bayesian approaches to disease mapping. In: Elliott P, Wakefield JC, Best NG, Briggs DG (eds) Spatial epidemiology: methods and applications. Oxford University Press, Oxford, pp 104–127

    Google Scholar 

  • Waller LA, Gotway CA (2004) Applied spatial statistics for public health data. Wiley, New York

    Google Scholar 

  • Waller LA, Goodwin BJ, Wilson ML, Ostfeld RS, Marshall SL, Hayes EB (2007) Spatio-temporal patterns in county-level incidence and reporting of Lyme disease in the northeastern United States, 1990–2000. Environ Ecol Stat 14:83–100

    Article  Google Scholar 

  • Webster R, Oliver MA (2001) Geostatistics for environmental scientists. John Wiley & Sons, Ltd., Chichester, New York

    Google Scholar 

  • Weyer F (1956) Bemerkungen zum Erlöschen der ostfriesischen Malaria und zur Anopheles-Lage in Deutschland. Z Tropenmed Parasitol 7:219–228

    PubMed  CAS  Google Scholar 

  • WHO (World Health Organistion) (2004) Using climate to predict infectious disease outbreaks. A review. Geneva

  • Wilke A, Kiel E, Schröder W, Kampen H (2006) Anophelinae (Diptera: Culicidae) in ausgewählten Marschgebieten Niedersachsens: Bestandserfassung, Habitatbindung und Interpolation. Mitt Dtsch Ges Allg Angew Ent 15:357–362

    Google Scholar 

  • Wilson ML (1998) Distribution and abundance of Ixodes scapularis (Acari: Ixodidae) in NorthAmerica: ecological processes and spatial analysis. J Med Entomol 35:446–457

    PubMed  CAS  Google Scholar 

  • Williams S (2002) Free as in freedom. Richard Stallman’s crusade for free software. O’Reilly, Sebastopol, Cambridge, pp. 240

  • Wilson ML, Ducey AM, Litwin TS, Gavin TA, Spielman A (1990) Microgeographic distribution of immature Ixodes dammini ticks correlated with that of deer. Med Vet Entomol 4:151–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Schröder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, W., Schmidt, G. Spatial modelling of the potential temperature-dependent transmission of vector-associated diseases in the face of climate change: main results and recommendations from a pilot study in Lower Saxony (Germany). Parasitol Res 103 (Suppl 1), 55–63 (2008). https://doi.org/10.1007/s00436-008-1051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-008-1051-z

Keywords

Navigation