Skip to main content
Log in

α14-Giardin (annexin E1) is associated with tubulin in trophozoites of Giardia lamblia and forms local slubs in the flagella

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

An Erratum to this article was published on 23 November 2007

Abstract

In a previous study, we reported that the novel annexin XX1 (annexin E1), identical to α14-giardin, is specifically localized to the flagella and to the median body of the trophozoites. However, the mode of interaction and the direct partners involved remained unclear. In the present study, we show that α4-giardin obviously does not evenly distribute over the full length of the axonemes, but rather, resides at local slubs near the proximal part and the ends of the flagella. In immunocytochemical co-localization studies, the anti-giardin primary antibody exclusively reacted with distinct regions of the flagella in permeabilized cells, whereas the anti-tubulin antibody bound to all areas of the axonemes in the cells and to isolated cytoskeletons. Isolated cytoskeletons did not react with anti-giardin antibodies. α14-Giardin itself is able to assemble to multimeric structures. Taken together, our findings suggest that α14-giardin adheres to microtubules of the flagella via self-assembly that may regulated by Ser/Thr-phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475

    Article  PubMed  CAS  Google Scholar 

  • Allore RJ, Barber BH (1984) A recommendation for visualizing disulfide bonding by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 137:523–527

    Article  PubMed  CAS  Google Scholar 

  • Bauer B, Engelbrecht S, Bakker-Grunwald T, Scholze H (1999) Functional identification of alpha 1-giardin as an annexin of Giardia lamblia. FEMS Microbiol Lett 173:147–153

    PubMed  CAS  Google Scholar 

  • Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  PubMed  CAS  Google Scholar 

  • Clark JT, Holberton DV (1988) Triton-labile antigens in flagella isolated from Giardia lamblia. Parasitol Res 74:415–423

    Article  PubMed  CAS  Google Scholar 

  • Crossley R, Holberton DV (1983) Characterization of proteins from the cytoskeleton of Giardia lamblia. J Cell Sci 59:81–103

    PubMed  CAS  Google Scholar 

  • Douglas M, Finkelstein D, Butow RA (1979) Analysis of products of mitochondrial protein synthesis in yeast: genetic and biochemical aspects. Methods Enzymol 56:58–66

    Article  PubMed  CAS  Google Scholar 

  • Drewes G, Ebneth A, Mandelkow E (1998) MAPs, MARKs and microtubule dynamics. Trends Biochem Sci 23:307–311

    Article  PubMed  CAS  Google Scholar 

  • Edwards HC, Crumpton MJ (1991) Ca2+-dependent phospholipid and arachidonic acid binding by the placental annexins VI and IV. Eur J Biochem 98:121–129

    Article  Google Scholar 

  • Elmendorf HG, Dawson SC, McCaffery JM (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33:3–28

    Article  PubMed  Google Scholar 

  • Embley TM, Hirt RP (1998) Early branching eukaryotes. Curr Opin Genet Dev 8:624–629

    Article  PubMed  CAS  Google Scholar 

  • Gillin FD, Reiner DS, McCaffery JM (1996) Cell biology of the primitive eukaryote Giardia lamblia. Annu Rev Microbiol 50:679–705

    Article  PubMed  CAS  Google Scholar 

  • Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488

    Article  PubMed  CAS  Google Scholar 

  • Matsudaira P (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262:10035–10038

    PubMed  CAS  Google Scholar 

  • McArthur AG, Morrison HG, Nixon JE, Passamaneck NQ, Kim U, Hinkle G, Crocker MK, Holder ME, Farr R, Reich CI, Olsen GE, Aley SB, Adam RD, Gillin FD, Sogin ML (2000) The Giardia genome project database. FEMS Microbiol Lett 189:271–273

    Article  PubMed  CAS  Google Scholar 

  • Morgan RO, Fernandez M-P (1995) Molecular phylogeny of annexins and identification of a primitive homologue in Giardia lamblia. J Mol Evol 12:967–979

    CAS  Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 88:255–262

    Article  Google Scholar 

  • Peattie DA (1990) The giardins of Giardia lamblia. Parasitol Today 6:52–56

    Article  PubMed  CAS  Google Scholar 

  • Peattie DA, Alonso RA, Hein A, Caulfield JP (1989) Ultrastructural localization of giardins to the edges of disk microribbons of Giardia lamblia and the nucleotide and deduced protein sequence of alpha giardin. J Cell Biol 109:2323–2335

    Article  PubMed  CAS  Google Scholar 

  • Rescher U, Gerke V (2004) Annexins—unique membrane binding proteins with diverse functions. J Cell Sci 117:2631–2639

    Article  PubMed  CAS  Google Scholar 

  • Roger AJ (1999) Reconstructing early events in eukaryotic evolution. Amer Nat 154:146–163

    Article  Google Scholar 

  • Roth J, Bendayan M, Carlemalm E, Villiger W, Garavito M (1981) Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29:663–671

    PubMed  CAS  Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243:75–77

    Article  PubMed  CAS  Google Scholar 

  • Szkodowska A, Muller MC, Linke C, Scholze H (2002) Annexin XXI (ANX21) of Giardia lamblia has sequence motifs uniquely shared by giardial annexins and is specifically localized in the flagella. J Biol Chem 277:25703–25706

    Article  PubMed  CAS  Google Scholar 

  • Weiland ME, McArthur AG, Morrison HG, Sogin ML, Svärd SG (2005) Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia. Int J Parasitol 35:617–626

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Jan Hegemann (European Neuroscience Institute, Göttingen) for valuable advice in electron microscopy and Dr. Stefan Walter for performing ESI-MS. This work includes parts of the doctoral thesis of A.V., who is a recipient of a grant from the research training group 612 of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Scholze.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00436-007-0814-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vahrmann, A., Šarić, M., Scholze, H. et al. α14-Giardin (annexin E1) is associated with tubulin in trophozoites of Giardia lamblia and forms local slubs in the flagella. Parasitol Res 102, 321–326 (2008). https://doi.org/10.1007/s00436-007-0758-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-007-0758-6

Keywords

Navigation