Skip to main content
Log in

Cytogenetic and molecular evidence for two species in the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Seventeen isolines of Anopheles barbirostris derived from animal-biting female mosquitoes showed three karyotypic forms: Form A (X2, Y1) in five isolines from Phetchaburi province; Form B (X1, X3, Y2) in three and eight isolines from Chiang Mai and Ubon Ratchathani provinces, respectively; Form C (X2, Y3) in one isoline from Phetchaburi province. All 17 isolines exhibited an average branch summation of seta 2-VI pupal skins ranging from 12.1–13.0 branches, which was in the limit of A. barbirostris (6–18 branches). Of the 12 human-biting isolines from Chiang Mai province, five isolines showed Form B (X2, Y2), and seven isolines exhibited a new karyotypic form designated as Form E (X2, Y5). All of 12 isolines had an average branch summation of seta 2-VI pupal skins ranging from 22.4–24.5 branches, which was in the limit of Anopheles campestris (17–58 branches). Thus, they were tentatively designated as A. campestris-like Forms B and E. Hybridization between A. campestris-like Forms B and E showed that they were genetically compatible, yielding viable progeny for several generations suggesting conspecific relationships of these two karyotypic forms. Reproductive isolation among crosses between A. campestris-like Form B and A. barbirostris Forms A, B, and C strongly suggested the existence of these two species. In addition, the very low intraspecific variation (genetic distance <0.005) of the nucleotide sequence of ITS2 of the rDNA and COI and COII of mitochondrial DNA of the seven isolines of A. campestris-like Forms B and E supported their conspecific relationship. The large sequence divergence of ITS2 (0.203–0.268), COI (0.026–0.032), and COII (0.030–0.038) from genomic DNA of A. campestris-like Forms B and E and the A. barbirostris Forms A, B, and C clearly supported cytogenetic and morphological evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apiwathnasorn C, Prommongkol S, Samung Y, Limrat D, Rojruthai B (2002) Potential for Anopheles campestris (Diptera: Culicidae) to transmit malaria parasites in Pa Rai subdistrict (Aranyaprathet, Sa Kaeo province), Thailand. J Med Entomol 39:583–586

    Article  Google Scholar 

  • Atomosoedjono S, van Peenen PF, Putrali J (1976) Anopheles barbirostris (Van der Wulp) still an efficient vector of Brugia malayi in Central Sulawesi (Celebes), Indonesia. Trans R Soc Trop Med Hyg 70:259

    Article  PubMed  CAS  Google Scholar 

  • Baimai V (1977) Chromosomal polymorphisms of constitutive heterochromatin and inversions in Drosophila. Genetics 85:85–93

    Google Scholar 

  • Baimai V (1998) Heterochromatin accumulation and karyotypic evolution in some Dipteran insects. Zool Stud 32:75–88

    Google Scholar 

  • Baimai V, Rattanarithikul R, Kijchalao U (1995) Metaphase karyotypes of Anopheles of Thailand and Southeast Asia: IV. The barbirostris and umbrosus species groups, subgenus Anopheles (Diptera: Culicidae). J Am Mosq Control Assoc 11:323–328

    Google Scholar 

  • Beebe NW, Saul A (1995) Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am J Trop Med Hyg 53:478–481

    PubMed  CAS  Google Scholar 

  • Choochote W, Sucharit S, Abeywickreme W (1983) Experiments in crossing two strains of Anopheles barbirostris Van der Wulp 1884 (Diptera: Culicidae) in Thailand. Southeast Asian J Trop Med Public Health 14:204–209

    PubMed  CAS  Google Scholar 

  • Choochote W, Jitpakdi A, Rongsriyam Y, Komalamisra N, Pitasawat B, Palakul K (1998) Isoenzyme study and hybridization of two forms of Anopheles sinensis (Diptera: Culicidae) in northern Thailand. Southeast Asian J Trop Med Public Health 29:841–848

    PubMed  CAS  Google Scholar 

  • Choochote W, Pitasawat B, Jitpakdi A, Rattanachanpichai E, Riyong D, Leemingsawat S, Wongkamchai S (2001) The application of ethanol-extracted Gloriosa superba for metaphase chromosome preparation in mosquitoes. Southeast Asian J Trop Med Public Health 32:76–82

    PubMed  CAS  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  • Griffith ME (1955) A note on Anopheles minimus Theobald as a malaria vector in Thailand. VI Int Congr Microbiol 5:565–567

    Google Scholar 

  • Harbach RE (2004) The classification of genus Anopheles (Diptera: Culicidae): a working hypothesis of phylogenetic relationships. Bull Entomol Res 94:537–553

    Article  PubMed  CAS  Google Scholar 

  • Harrison BA, Scanlon JE (1975) Medical entomology studies. II. The subgenus Anopheles in Thailand (Diptera: Culicidae). Contrib Am Entomol Inst 12:78

    Google Scholar 

  • Iyengar MOT (1953) Filariasis in Thailand. Bull W H O 9:731–766

    PubMed  CAS  Google Scholar 

  • Junkum A, Komalamisra N, Jitpakdi A, Jariyapan N, Min GS, Park MH, Cho KH, Somboon P, Bates PA, Choochote W (2005) Evidence to support two conspecific cytological races of Anopheles aconitus in Thailand. J Vector Ecol 30:213–224

    PubMed  Google Scholar 

  • Kim SJ, Choochote W, Jitpakdi A, Junkum A, Park SJ, Min GS (2003) Establishment of a self-mating mosquito colony of Anopheles sinensis from Korea. Korean J Entomol 33:267–271

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kirnowardoyo S (1985) Status of Anopheles malaria vectors in Indonesia. Southeast Asian J Trop Med Public Health 16:129–132

    PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA 3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence alignment. Brief Bioinform 5: 150–163

    Article  PubMed  CAS  Google Scholar 

  • Limrat D, Rojruthai B, Apiwathnasorn C, Samung Y, Prommongkol S (2001) Anopheles barbirostris/campestris as a probable vector of malaria in Aranyaprathet, Sa Kaeo province. Southeast Asian J Trop Med Public Health 32:739–744

    PubMed  CAS  Google Scholar 

  • Min GS, Choochote W, Jitpakdi A, Kim SJ, Jung J, Junkum A (2002) Intraspecific hybridization of Anopheles sinensis (Diptera: Culicidae) strains from Thailand and Korea. Mol Cells 14:198–204

    PubMed  CAS  Google Scholar 

  • Norris DE (2002) Genetic markers for study of the anopheline vectors of human malaria. Int J Parasitol 32:1607–1615

    Article  PubMed  CAS  Google Scholar 

  • Park SJ, Choochote W, Jitpakdi A, Junkum A, Kim SJ, Jariyapan N, Park JW, Min GS (2003) Evidence for a conspecific relationship between two morphologically and cytologically different Forms of Korean Anopheles pullus mosquito. Mol Cells 14:354–360

    CAS  Google Scholar 

  • Parkewitz SM, Wesson DM, Collins FH (1993) The internal transcribed spacers of ribosomal DNA in five members of the Anopheles gambiae species complex. Insect Mol Biol 2:247–257

    Google Scholar 

  • Rattanarithikul R, Harrison BA, Harbach RE, Panthusiri P, Coleman RE (2006) Illustrated keys to the mosquitoes of Thailand IV. Anopheles. Southeast Asian J Trop Med Public Health 37(Suppl 2):1–128

    Google Scholar 

  • Reid JA (1962) The Anopheles barbirostris group (Diptera: Culicidae). Bull Entomol Res 53:1

    Article  Google Scholar 

  • Reid JA (1968) Anopheline mosquitoes of Malaya and Borneo. Stud Inst Med Res Malaya 31:1–520

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sattabongkot J, Tsuboi T, Zollner GE, Sirichaisinthop J, Cui L (2004) Plasmodium vivax transmission: chances for control? Trends Parasitol 20:192–198

    Article  PubMed  Google Scholar 

  • Sharpe RG, Harbach RE, Butlin RK (2000) Molecular variation and phylogeny of members of the Minimus group of Anopheles subgenus Cellia (Diptera: Culicidae). Syst Entomol 25:263–272

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the Biodiversity Research and Training Program (Grant No. BRT_249004) and the Thailand Research Fund through the Royal Golden Jubilee Ph.D Program (Grant No. PHD/0052/2548) for financially supporting this research project. We also thank Dr. Niwes Nantachit, Dean of the Faculty of Medicine, Chiang Mai University, for his interest in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wej Choochote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeung, A., Otsuka, Y., Baimai, V. et al. Cytogenetic and molecular evidence for two species in the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand. Parasitol Res 101, 1337–1344 (2007). https://doi.org/10.1007/s00436-007-0645-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-007-0645-1

Keywords

Navigation