Skip to main content

Advertisement

Log in

Selection of endogenous reference genes for gene expression analysis in Leishmania major developmental stages

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

At the era of post-genomics, gene expression analysis constitutes an important step for understanding the biological functions of genes. For this, reverse transcription and real-time polymerase chain reaction (RT-PCR) is one of the most accurate techniques available to date. Normalization with a proper internal control is critical for the generation of reliable results with biological significance. This is particularly true for pathogens, like Leishmania (L.) parasites, that alternate between different stages during their life cycle. In this study, we evaluate six different sequences for their potential as suitable internal control for the study of gene expression in three different developmental stages (procyclic and metacyclic promastigotes and amastigotes) of the parasite Leishmania major. Experiments were performed on RNA purified from three L. major isolates using the RT-PCR technique. Data analysis was performed using GeNorm and NormFinder programs. We could determine that a sequence encoding rRNA45 is the most stable in the three developmental stages of the parasite and can thus be used as a reference gene in gene expression studies in L. major.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Akopyants NS, Matlib RS, Bukanova EN, Smeds MR, Brownstein BH, Stormo GD, Beverley SM (2004) Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Mol Biochem Parasitol 136:71–86

    Article  PubMed  CAS  Google Scholar 

  • Alexander J, Russell DG (1992) The interaction of Leishmania species with macrophages. Adv Parasitol 31:175–254

    PubMed  CAS  Google Scholar 

  • Almeida R, Norrish A, Levick M, Vetrie D, Freeman T, Vilo J, Ivens A, Lange U, Stober C, McCann S, Blackwell JM (2002) From genomes to vaccines: Leishmania as a model. Philos Trans R Soc Lond, B Biol Sci 357:5–11

    Article  CAS  Google Scholar 

  • Almeida R, Gilmartin BJ, McCann SH, Norrish A, Ivens AC, Lawson D, Levick MP, Smith DF, Dyall SD, Vetrie D, Freeman TC, Coulson RM, Sampaio I, Schneider H, Blackwell JM (2004) Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Mol Biochem Parasitol 136:87–100

    Article  PubMed  CAS  Google Scholar 

  • Amer AO, Swanson MS (2002) A phagosome of one’s own: a microbial guide to life in the macrophage. Curr Opin Microbiol 5:56–61

    Article  PubMed  CAS  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription–PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Barral A, Petersen EA, Sacks DL, Neva FA (1983) Late metastatic Leishmaniasis in the mouse. A model for mucocutaneous disease. Am J Trop Med Hyg 32:277–285

    PubMed  CAS  Google Scholar 

  • Chenik M, Douagi F, Achour YB, Khalef NB, Ouakad M, Louzir H, Dellagi K (2005) Characterization of two different mucolipin-like genes from Leishmania major. Parasitol Res 98:5–13

    Article  PubMed  Google Scholar 

  • Cunningham AC (2002) Parasitic adaptive mechanisms in infection by leishmania. Exp Mol Pathol 72:132–141

    Article  PubMed  CAS  Google Scholar 

  • Desjeux P (1996) Leishmaniasis Public health aspects and control. Clin Dermatol 14:417–423

    Article  PubMed  CAS  Google Scholar 

  • Ding C, Cantor CR (2004) Quantitative analysis of nucleic acids—the last few years of progress. J Biochem Mol Biol 37:1–10

    PubMed  CAS  Google Scholar 

  • Duclos S, Desjardins M (2000) Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Microbiol 2:365–377

    Article  PubMed  CAS  Google Scholar 

  • Handman E (1999) Cell biology of Leishmania. Adv Parasitol 44:1–39

    Article  PubMed  CAS  Google Scholar 

  • Holzer TR, McMaster WR, Forney JD (2006) Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol 146:198–218

    Article  PubMed  CAS  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284

    Article  PubMed  CAS  Google Scholar 

  • Jaffe CL, Rachamim N (1989) Amastigote stage-specific monoclonal antibodies against Leishmania major. Infect Immun 57:3770–3777

    PubMed  CAS  Google Scholar 

  • Kebaier C, Louzir H, Chenik M, Ben Salah A, Dellagi K (2001) Heterogeneity of wild Leishmania major isolates in experimental murine pathogenicity and specific immune response. Infect Immun 69:4906–4915

    Article  PubMed  CAS  Google Scholar 

  • Knuepfer E, Stierhof YD, McKean PG, Smith DF (2001) Characterization of a differentially expressed protein that shows an unusual localization to intracellular membranes in Leishmania major. Biochem J 356:335–344

    Article  PubMed  CAS  Google Scholar 

  • Kubar J, Fragaki K (2005) Recombinant DNA-derived Leishmania proteins: from the laboratory to the field. Lancet Infect Dis 5:107–114

    PubMed  CAS  Google Scholar 

  • Louzir H, Melby PC, Ben Salah A, Marrakchi H, Aoun K, Ben Ismail R, Dellagi K (1998) Immunologic determinants of disease evolution in localized cutaneous leishmaniasis due to Leishmania major. J Infect Dis 177:1687–1695

    Article  PubMed  CAS  Google Scholar 

  • Price HP, Menon MR, Panethymitaki C, Goulding D, McKean PG, Smith DF (2003) Myristoyl-CoA:protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J Biol Chem 278:7206–7214

    Article  PubMed  CAS  Google Scholar 

  • Sacks DL (2001) Leishmania-sand fly interactions controlling species-specific vector competence. Cell Microbiol 3:189–196

    Article  PubMed  CAS  Google Scholar 

  • Saxena A, Worthey EA, Yan S, Leland A, Stuart KD, Myler PJ (2003) Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. Mol Biochem Parasitol 129:103–114

    Article  PubMed  CAS  Google Scholar 

  • Spath GF, Beverley SM (2001) A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol 99:97–103

    Article  PubMed  CAS  Google Scholar 

  • Stober CB (2004) From genomes to vaccines for leishmaniasis. Methods Mol Biol 270:423–438

    PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Dr. Yosser Ben Achour-Chenik for manuscript reading and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hechmi Louzir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouakad, M., Bahi-Jaber, N., Chenik, M. et al. Selection of endogenous reference genes for gene expression analysis in Leishmania major developmental stages. Parasitol Res 101, 473–477 (2007). https://doi.org/10.1007/s00436-007-0491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-007-0491-1

Keywords

Navigation