Skip to main content
Log in

Membrane trafficking as a virulence mechanism of the enteric protozoan parasite Entamoeba histolytica

  • Review
  • Published:
Parasitology Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ankri S, Stolarsky T, Bracha R, Padilla-Vaca F, Mirelman D (1999) Antisense inhibition of expression of cysteine proteinases affects Entamoeba histolytica-induced formation of liver abscess in hamsters. Infect Immun 67:421–422

    PubMed  CAS  Google Scholar 

  • Bowers K, Stevens TH (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744:438–454

    Article  PubMed  CAS  Google Scholar 

  • Burda P, Padilla SM, Sarkar S, Emr SD (2002) Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci 115:3889–3900

    Article  PubMed  CAS  Google Scholar 

  • Carpeniseanu S, Hirata K, Que X, Orozco E, Reed SL (2000) L6: a proteinase- and phagocytosis-deficient mutant of Entamoeba histolytica. Arch Med Res 31:S237–238

    Article  PubMed  CAS  Google Scholar 

  • Costaguta G, Stefan CJ, Bensen ES, Emr SD, Payne GS (2001) Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol Biol Cell 12:1885–1896

    PubMed  CAS  Google Scholar 

  • Ghosh P, Dahms NM, Kornfeld S (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4:202–212

    Article  PubMed  CAS  Google Scholar 

  • Haft CR, de la Luz Sierra M, Bafford R, Lesniak MA, Barr VA. Taylor SI (2000) Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell 11:4105–4116

    PubMed  CAS  Google Scholar 

  • Haque R, Huston CD, Hughes M, Houpt E, Petri Jr. WA (2003) Amebiasis. N Engl J Med 348:1565–1573

    Article  PubMed  Google Scholar 

  • Hellberg A, Leippe M, Bruchhaus I (2000) Two major ‘higher molecular mass proteinases’ of Entamoeba histolytica are identified as cysteine proteinases 1 and 2. Mol Biochem Parasitol 105:305–309

    Article  PubMed  CAS  Google Scholar 

  • Hellberg A, Nickel R, Lotter H, Tannich E. Bruchhaus I (2001) Overexpression of cysteine proteinase 2 in Entamoeba histolytica or Entamoeba dispar increases amoeba-induced monolayer destruction in vitro but does not augment amoebic liver abscess formation in gerbils. Cell Microbiol 3:13–20

    Article  PubMed  CAS  Google Scholar 

  • Huston CD (2004) Parasite and host contributions to the pathogenesis of amebic colitis. Trends Parasitol 20:23–26

    Article  PubMed  Google Scholar 

  • Huston CD, Boettner DR, Miller-Sims V, Petri WA Jr (2003). Apoptotic killing and phagocytosis of host cells by the parasite Entamoeba histolytica. Infect Immun 71:964–972

    Article  PubMed  CAS  Google Scholar 

  • Mitra BN, Yasuda T, Kobayashi S, Saito-Nakano Y, Nozaki T (2005) Differences in morphology of phagosomes and kinetics of acidification and degradation in phagosomes between the pathogenic Entamoeba histolytica and the non-pathogenic Entamoeba dispar. Cell Motil Cytoskeleton 62:84–99

    Article  PubMed  CAS  Google Scholar 

  • Nakada-Tsukui K, Saito-Nakano Y, Ali V, Nozaki T (2005) A retromerlike complex is a novel Rab7 effector that is involved in the transport of the virulence factor cysteine protease in the enteric protozoan parasite Entamoeba histolytica. Mol Biol Cell 16(11):5294–5303

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Huston CD, Mann BJ, Petri WA, Kita K, Nozaki T (2005a) Proteomic analysis of phagocytosis in the enteric protozoan parasite Entamoeba histolytica. Eukaryot Cell 4:827–831

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Huston CD, Que M, Mann BJ, Petri WA, Kita K, Nozaki T (2005b) Kinetics and strain variation of phagosome proteins of Entamoeba histolytica by proteomic analysis. Mol Biochem Parasitol (in press)

    CAS  Google Scholar 

  • Orozco E, Suarez ME, Sanchez T (1985) Differences in adhesion, phagocytosis and virulence of clones from Entamoeba histolytica, strain HM1:IMSS. Int J Parasitol 15:655–660

    Article  PubMed  CAS  Google Scholar 

  • Que X, Reed SL (2000) Cysteine proteinases and the pathogenesis of amebiasis. Clin Microbiol Rev 13:196–206

    Article  PubMed  CAS  Google Scholar 

  • Que X, Brinen LS, Perkins P, Herdman S, Hirata K, Torian BE, Rubin H, McKerrow JH, Reed SL (2002) Cysteine proteinases from distinct cellular compartments are recruited to phagocytic vesicles by Entamoeba histolytica. Mol Biochem Parasitol 119:23–32

    Article  PubMed  CAS  Google Scholar 

  • Ravdin JI (1988) Amebiasis. Wiley, New York

    Google Scholar 

  • Reddy JV, Seaman MN (2001) Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol Biol Cell 12:3242–3256

    PubMed  CAS  Google Scholar 

  • Saito-Nakano Y, Yasuda T, Nakada-Tsukui K, Leippe M, Nozaki T (2004) Rab5-associated vacuoles play a unique role in phagocytosis of the enteric protozoan parasite Entamoeba histolytica. J Biol Chem 279:49497–49507

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN (2005) Recycle your receptors with retromer. Trends Cell Biol 15:68–75

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN, Williams HP (2002) Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol Biol Cell 13:2826–2840

    Article  PubMed  CAS  Google Scholar 

  • Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2:reviews3007.7

    Google Scholar 

  • Stuart LM, Ezekowitz RA (2005) Phagocytosis: elegant complexity. Immunity 22:539–550

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  • Verges M, Luton F, Gruber C, Tiemann F, Reinders LG, Huang L, Burlingame AL, Haft CR, Mostov KE (2004) The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 6:763–769

    Article  PubMed  CAS  Google Scholar 

  • Zhai Y, Saier MH Jr (2000) The amoebapore superfamily. Biochim Biophys Acta 1469:87–99

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant for Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (16017307, 16044250, 17390124), a grant from the Japan Health Sciences Foundation, and a grant for research on emerging and reemerging infectious diseases from the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyoshi Nozaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozaki, T., Nakada-Tsukui, K. Membrane trafficking as a virulence mechanism of the enteric protozoan parasite Entamoeba histolytica . Parasitol Res 98, 179–183 (2006). https://doi.org/10.1007/s00436-005-0079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-005-0079-6

Keywords

Navigation