Skip to main content
Log in

Muscle system in rediae and daughter sporocysts of several digeneans

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Morphological studies on digenetic trematodes are quite numerous, but the large majority of researchers deal with the hermaphroditic generation (cercariae, metacercariae, adults). Parthenitae (miracidia, sporocysts, rediae), although they constitute a significant part of a digeneans’ life cycle, attract much less attention. The sparse literature concerning the musculature of parthenitae indicates that it differs in many respects from that of digenean hermaphroditic generation and many other flatworms. We have tried to fill the knowledge gap on digenean muscle systems by focusing on daughter parthenitae (three species with rediae and two with daughter sporocysts). The study was performed using TRITC-phalloidin labeling and confocal microscopy and was aimed at both describing general trends and comparing different morphotypes. The basic body-wall muscle layers were confirmed to be composed of circular and longitudinal muscle fibers. Circular fibers form quite a uniform layer, and longitudinal fibers are typically joined into bundles. The density of muscle layers varies widely among studied species, and the possible causes of this variation are discussed. The internal muscle fibers and bundles are present in all studied species, being most prominent in the anterior region. The brood chamber and birth pore channel often have a muscular lining. The rediae pharynx has a typical set of muscle elements, mostly coinciding with one in the pharynx of the hermaphroditic generation. Taken together, our findings suggest that data on the musculature of daughter parthenitae are important from an evolutionary perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The nature of digenean life cycle is disputable as no consensual opinion on type of multiplication within first intermediate host exists (for review see Whitfield and Evans 1983). Our paper does not focus on this problem, so we choose to follow the hypothesis which seems most convincing to us—apomictic parthenogenesis [supported by James and Bowers (1967), Pearson (1972), Galaktionov and Dobrovolskij (2003)].

  2. Internal (or parenchymal) musculature in flatworms typically comprises dorsoventral muscle fibers and in some cases—various additional bundles.

  3. This term is used to define lining of the brood chamber formed of flattened and transformed parenchymal cells (Galaktionov and Dobrovolskij 2003).

  4. In case of flatworms, more precise term is Hautmuskelschlauch (Schmidt-Rhaesa 2007), but it is not widely used.

  5. The constrictions may serve for brood chamber compartmentalization—to separate cercariae embryos of different age, so that elder ones do not hurt younger. Many digeneans developed analogous mechanisms of embryo protection, e.g., endocyst chambers in various sporocysts and rediae (Galaktionov and Dobrovolskij 2003).

References

  • Ax P (1996) Multicellular animals: a new approach to the phylogenetic order in nature, vol I. Springer, Berlin

    Book  Google Scholar 

  • Bahia D, Avelar LGA, Vigorosi F, Cioli D, Oliveira GC, Mortara RA (2006) The distribution of motor proteins in the muscles and flame cells of the Schistosoma mansoni miracidium and primary sporocyst. Parasitology 133:321–329. doi:10.1017/S0031182006000400

    Article  CAS  PubMed  Google Scholar 

  • Bulantová J, Chanová M, Houžvičková L, Horák P (2011) Trichobilharzia regenti (Digenea: Schistosomatidae): changes of body wall musculature during the development from miracidium to adult worm. Micron 42:47–54. doi:10.1016/j.micron.2010.08.003

    Article  PubMed  Google Scholar 

  • Chapman G (1958) The hydrostatic skeleton in the invertebrates. Biol Rev 33(3):338–371. doi:10.1111/j.1469-185X.1958.tb01260.x

    Article  Google Scholar 

  • Clark R (1964) Dynamics in metazoan evolution. The origin of the coelom and segments. Clarendon Press, Oxford

    Google Scholar 

  • Cort WW (1944) The germ cell cycle in the digenetic trematodes. Q Rev Biol 19(4):275–284

    Article  Google Scholar 

  • Cort WW, Ameel DJ, Van der Woude A (1954) Germinal development in the sporocysts and rediae of the digenetic trematodes. Exp Parasitol 3(2):185–225. doi:10.1016/0014-4894(54)90008-9

    Article  CAS  PubMed  Google Scholar 

  • Cribb TH, Bray RA, Olson PD, Timothy D, Littlewood J (2003) Life cycle evolution in the Digenea: a new perspective from phylogeny. Adv Parasitol 54:197–254. doi:10.1016/S0065-308X(03)54004-0

    Article  PubMed  Google Scholar 

  • Galaktionov KV, Dobrovolskij AA (2003) Biology and evolution of trematodes. An essay on the biology, morphology, life cycles, transmission, and evolution of digenetic trematodes. Kluwer Academic, London

    Google Scholar 

  • Ginetsinskaya TA (1968) Trematodes, their life cycles, biology and evolution. Nauka, Leningrad, USSR (in Russian)

    Google Scholar 

  • Ginetsinskaya T (1988) Trematodes, their life cycles, biology and evolution. Amerind Publ. Co., Pvt. Ltd., New Delhi

    Google Scholar 

  • Halton DW, Maule AG (2004) Flatworm nerve-muscle: structural and functional analysis. Can J Zool 82:316–333. doi:10.1139/z03-221

    Article  Google Scholar 

  • Hooge MD (2001) Evolution of body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). J Morphol 249:171–194. doi:10.1002/jmor.1048

    Article  CAS  PubMed  Google Scholar 

  • James BL, Bowers EA (1967) Reproduction in the daughter sporocyst of Cercaria bucephalopsis haimeana (Lacaze-Duthiers, 1854) (Bucephalidae) and Cercaria dichotoma Lebour, 1911 (non Müller) (Gymnophallidae). Parasitology 57(04):607–625

    Article  CAS  PubMed  Google Scholar 

  • Joffe BI, Chubrik GK (1988) The structure of the pharynx in trematodes and phylogenetic relations between Trematoda and Turbellaria. Parazitologiya 22(4):297–303 (In Russian)

    Google Scholar 

  • Køie M (1971) On the histochemistry and ultrastructure of the daughter sporocyst of Cercaria buccini Lebour, 1911. Ophelia 9(1):145–163. doi:10.1080/00785326.1971.10430093

    Article  Google Scholar 

  • Krupenko DY, Dobrovolskij AA (2015) Somatic musculature in trematode hermaphroditic generation. BMC Evol Biol 15(1):1. doi:10.1186/s12862-015-0468-0

    Article  Google Scholar 

  • Lumsden RD, Specian R (1980) The morphology, histology and fine structure of the adult stage of the Cyclophyllidean tapeworm Hymenolepis diminuta. In: Arai HP (ed) Biology of the tapeworm Hymenolepis diminuta. Academic Press, London, New York

    Google Scholar 

  • Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J Parasitol 33:733–755. doi:10.1016/S0020-7519(03)00049-3

    Article  CAS  PubMed  Google Scholar 

  • Pearson JC (1972) A phylogeny of life-cycle patterns of the Digenea. Adv Parasitol 10:153–189

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Junior Maldonado A, Attias M, Lanfredi RM (2004) Morphology of the rediae of Echinostoma paraensei (Trematoda: Echinostomatidae) from its intermediate host Lymnaea columella (Mollusca, Gastropoda). Parasitol Res 93:171–177. doi:10.1007/s00436-004-1110-z

    Article  CAS  PubMed  Google Scholar 

  • Popiel I (1978) The Ultrastructure of the Daughter Sporocyst of Cercaria littorinae saxatilis V Popiel, 1976 (Digenea: Microphallidae). Z Parasitenk 56:167–173. doi:10.1007/BF00930747

    Article  Google Scholar 

  • Popiel I, James BL (1978) The ultrastructure of the tegument of the daughter sporocyst of Microphallus similis (Jäg., 1900) (Digenea: Microphallidae). Parasitology 76:359–367. doi:10.1017/S0031182000048228

    Article  Google Scholar 

  • Rees G (1966) Light and electron microscope studies of the redia of Parorchis acanthus Nicoll. Parasitology 56(03):589–602. doi:10.1017/S0031182000069079

    Article  CAS  PubMed  Google Scholar 

  • Rees G (1971) The ultrastructure of the epidermis of the redia and cercaria of Parorchis acanthus, Nicoll. A study by scanning and transmission electron-microscopy. Parasitology 62(3):479–488. doi:10.1017/S0031182000077623

    Article  CAS  PubMed  Google Scholar 

  • Rees G (1983) The ultrastructure of the fore-gut of the redia of Parorchis acanthus Nicoll (Digenea: Philophthalmidae) from the digestive gland of Nucella lapillus L. Parasitology 87:151–158. doi:10.1017/S0031182000052495

    Article  Google Scholar 

  • Rozario T, Newmark PA (2015) A confocal microscopy-based atlas of tissue architecture in the tapeworm Hymenolepis diminuta. Exp Parasitol 158:31–41. doi:10.1016/j.exppara.2015.05.015

    Article  PubMed  Google Scholar 

  • Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, Oxford

    Book  Google Scholar 

  • Šebelová Š, Stewart MT, Mousley A, Fried B, Marks NJ, Halton DW (2004) The musculature and associated innervation of adult and intramolluscan stages of Echinostoma caproni (Trematoda) visualised by confocal microscopy. Parasitol Res 93:196–206. doi:10.1007/s00436-004-1120-x

    Article  PubMed  Google Scholar 

  • Shulman SS, Shulman-Albova RE (1953) Parasites of fish of the White Sea. [Parasites of White Sea fishes]. Izdatelstvo Akademia Nauk SSSR, Moskva-Leningrad (In Russian)

    Google Scholar 

  • Terenina NB, Tolstenkov O, Fagerholm HP, Serbina EA, Vodjanitskaja SN, Gustafsson MKS (2006) The spatial relationship between the musculature and the NADPH-diaphorase activity, 5-HT and FMRFamide immunoreactivities in redia, cercaria and adult Echinoparyphium aconiatum (Digenea). Tissue Cell 38:151–157. doi:10.1016/j.tice.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  • Terenina NB, Poddubnaya LG, Tolstenkov OO, Gustafsson MKS (2009) An immunocytochemical, histochemical and ultrastructural study of the nervous system of the tapeworm Cyathocephalus truncatus (Cestoda, Spathebothriidea). Parasitol Res 104(2):267–275. doi:10.1007/s00436-008-1187-x

    Article  PubMed  Google Scholar 

  • Wahlberg MH (1998) The distribution of F-actin during the development of Diphyllobothrium dendriticum (Cestoda). Cell Tissue Res 291(3):561–570. doi:10.1007/s004410051025

    Article  CAS  PubMed  Google Scholar 

  • Whitfield PJ, Evans NA (1983) Parthenogenesis and asexual multiplication among parasitic platyhelminths. Parasitology 86(04):121–160. doi:10.1017/S0031182000050873

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Tatyana Panfilkina (SPbU) who helped to collect the material and to Dr. Andrey Dobrovolskij and Dr. Anson Koehler who took part in the manuscript revision. This research would have been impossible without the facilities of Marine Biological Station of Saint Petersburg State University. The confocal microscopy studies were carried out using the equipment of research resource centers “Chromas” and “Molecular and Cell Technologies” of Saint Petersburg State University. The project was funded by grants of Saint Petersburg State University (No. 1.42.1493.2015) and Russian Foundation for Basic Research (No. 16-34-60156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darya Y. Krupenko.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupenko, D.Y., Krapivin, V.A. & Gonchar, A.G. Muscle system in rediae and daughter sporocysts of several digeneans. Zoomorphology 135, 405–418 (2016). https://doi.org/10.1007/s00435-016-0318-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-016-0318-7

Keywords

Navigation