Skip to main content
Log in

Molecular and morphological differentiation of sympatric larvae of coral excavating sponges of genus Thoosa

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Thoosa calpulli and T. mismalolli are two of the most abundant excavating sponges in reefs in the Mexican Pacific Ocean. These species release large numbers of larvae into the water column, which are apparently capable of dispersing long distances. However, determining important aspects of larval ecology (distribution, dispersal pattern, dynamics, etc.) is challenging due to the lack of appropriate taxonomical characters for larval ID in sponges. This work describes the morphology of the planktonic larvae of these two sympatric species. Different subtle morphological characteristics associated with body size and spicule ornamentation of the monaxonic discs were considered to be relevant to distinguish between both species, which allowed an easy process for taxonomical identification. A partial sequence of the mitochondrial cytochrome oxidase c subunit 1 (cox1) of larvae collected directly from the plankton and adults was amplified to corroborate the validity of the morphological features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bautista-Guerrero E, Carballo JL, Maldonado M (2010) Reproductive cycle of the coral-excavating sponge Thoosa mismalolli (Clionaidae) from Mexican Pacific coral reefs. Invertebr Biol 129:285–296

    Article  Google Scholar 

  • Burton RS (1996) Molecular tools in marine ecology. J Exp Mar Biol Ecol 200:85–101

    Article  CAS  Google Scholar 

  • Carballo JL, Cruz-Barraza JA, Gómez P (2004) Taxonomy and description of clionaid sponges (Hadromerida, Clionaidae) from the Pacific Ocean of Mexico. Zool J Linn Soc 141:353–387

    Article  Google Scholar 

  • Carballo JL, Bautista-Guerrero E, Leyte-Morales E (2008) Boring sponges and the modeling of coral reefs in the east Pacific Ocean. Mar Ecol Prog Ser 356:113–122

    Article  Google Scholar 

  • Ereskovsky AV (2010) The comparative embryology of sponges. Springer, Netherlands 329 p

  • de Caralt S, Otjens H, Uriz MJ, Wijffels RH (2007) Cultivation of sponge larvae: settlement, survival, and growth of juveniles. Mar Biotechnol 9(5):592–605

  • De Paula TS, Zilberberg C, Hajdu E, Lôbo-Hajdu G (2012) Morphology and molecules on opposite sides of the diversity gradient: four cryptic species of the Clionacelata (Porifera, Demospongiae) complex in South America revealed by mitochondrial and nuclear markers. Mol Phylogenet Evol 62(1):529–541

    Article  PubMed  Google Scholar 

  • Fell PE (1974) Porifera. In: Giese AC, Pearse JS (eds) Acoelomate and pseudocoelomate metazoans. Academic Press, New York

    Google Scholar 

  • Fell PE (1983) Porifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. John Wiley and Sons Ltd., Chichester, pp 1–29

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3(5):294–299

  • Garrone R (1974) Ultrastructure d’une “gemmule armee” planctonique d’eponge clionidae. Arch Anat Micros Morph Exper 63:163–182

    CAS  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224

    Article  CAS  PubMed  Google Scholar 

  • Karawaiew W (1896) Über ein neues Radiolar aus Villafranca. Zool Anz 19:501

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Maldonado M (2006) The ecology of the sponge larva. Can J Zool 84:175–194

    Article  Google Scholar 

  • Mariani S, Piscitelli MP, Uriz MJ (2001) Temporal and spatial co-occurrence in spawning and larval release of Cliona viridis (Porifera: Hadromerida). J Mar Biol Assoc UK 81:565–567

    Google Scholar 

  • Mariani S, Uriz MJ, Turon X (2005) The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. J Plankton Res 27:249–262

    Article  Google Scholar 

  • Morrow CC, Picton BE, Erpenbeck D, Boury-Esnault N, Maggs CA, Allcock AL (2012) Congruence between nuclear and mitochondrial genes in Demospongiae: a new hypothesis for relationships within the G4 clade (Porifera: Demospongiae). Mol Phylogenet Evol 62:174–190

    Article  CAS  PubMed  Google Scholar 

  • Neigel J, Domingo A, Stake J (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26:487–499

    Article  Google Scholar 

  • Pardo LM, Ampuero D, Véliz D (2009) Using morphological and molecular tools to identify megalopae larvae collected in the field: the case of sympatric Cancer crabs. J Mar Biol Assoc UK 89:481–490

    Article  Google Scholar 

  • Riesgo A, Novo M, Sharma PP, Peterson M, Maldonado M, Giribet G (2014) Inferring the ancestral sexuality and reproductive condition in sponges (Porifera). Zool Scr 43(1):101–117

    Article  Google Scholar 

  • Soler-Jiménez LC, García-Gasca A, Fajer-Ávila EJ (2012) A new species of Euryhaliotrematoides Plaisance & Kritsky, 2004 (Monogenea: Dactylogyridae) from the gills of the spotted rose snapper Lutjanus guttatus (Steindachner) (Perciformes: Lutjanidae). Syst Parasitol 82(2):113–119

  • Topsent E (1904) Spongiaires des Açores. Rés. Camp sci Prince Albert Monaco 25:1–280, pls. 1–18

  • Topsent E (1920) Caractères et affinités des Thoosa Hanc. et des Alectona. Cart Considérations sur leurs germes à armure. Bull Soc Zool Fr 45:89–97

    Google Scholar 

  • Trégouboff G (1939) Sur les larves planctoniques d’éponges. C R Acad Sci Paris 208:1245–1246

    Google Scholar 

  • Trégouboff G (1942) Contribution à la connaissance des larves planctoniques d’éponges. Arch Zool Exp Gen 82:357–399

    Google Scholar 

  • Vacelet J (1999) Planktonic armoured propagules of the excavating sponge Alectona (Porifera: Demospongiae) are larvae: evidence from Alectona wallichii and A. mesatlantica sp. nov. Abbreviated: Mem. Qld Mus 44:627–642

    Google Scholar 

  • Vargas S, Erpenbeck D, Göcke C, Hall KA, Hooper JNA, Janussen D, Wörheide G (2012) Molecular phylogeny of Abyssocladia (Cladorhizidae: Poecilosclerida) and Phelloderma (Phellodermidae: Poecilosclerida) suggests a diversification of chelae microscleres in cladorhizid sponges. Zool Scr 42:106–116

    Article  Google Scholar 

  • Wedd KE, Barnes DKA, Clark MS, Bowden DA (2006) DNA barcoding: a molecular tool to identify Antarctic larvae. Deep Sea Res Part II 53:1053–1060

    Article  Google Scholar 

  • Whalan S, Johnson MS, Harvey E, Battershill C (2005) Mode of reproduction, recruitment, and genetic subdivision in the brooding sponge Haliclona sp. Mar Biol 146(3):425–433

    Article  Google Scholar 

  • Xue L, Zhang W (2009) Growth and survival of early juveniles of the marine sponge Hymeniacidon perlevis (Demospongiae) under controlled conditions. Mar Biotechnol 11:640–649

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Arturo Núñez, Mateo Amillano, Armando Chávez and Humberto Ovalle for assistance in field sampling. We are grateful to Selene María Abad Rosales and Yolanda Hornelas Orozco for technical assistance and to Clara Ramirez for her help in the search for scientific literature. We also thank SAGARPA for collecting permits (DGOPA.02476.220306.0985 and DGOPA.06648.140807.3121). Finally we want to thank CONACYT SEP-2003-C02-42550 and CONACYT SEP 2008 (102239) for the financial support granted to Jose Luis Carballo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bautista-Guerrero.

Additional information

Communicated by A. Schmidt-Rhaesa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bautista-Guerrero, E., Carballo, J.L., Aguilar-Camacho, J.M. et al. Molecular and morphological differentiation of sympatric larvae of coral excavating sponges of genus Thoosa . Zoomorphology 135, 159–165 (2016). https://doi.org/10.1007/s00435-016-0305-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-016-0305-z

Keywords

Navigation