Skip to main content
Log in

Application of magnetic resonance imaging in zoology

  • Review Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is a noninvasive imaging technique that today constitutes one of the main pillars of preclinical and clinical imaging. MRI’s capacity to depict soft tissue in whole specimens ex vivo as well as in vivo, achievable voxel resolutions well below (100 μm)3, and the absence of ionizing radiation have resulted in the broad application of this technique both in human diagnostics and studies involving small animal model organisms. Unfortunately, MRI systems are expensive devices and have so far only sporadically been used to resolve questions in zoology and in particular in zoomorphology. However, the results from two recent studies involving systematic scanning of representative species from a vertebrate group (fishes) as well as an invertebrate taxon (sea urchins) suggest that MRI could in fact be used more widely in zoology. Using novel image data derived from representative species of numerous higher metazoan clades in combination with a comprehensive literature survey, we review and evaluate the potential of MRI for systematic taxon scanning. According to our results, numerous animal groups are suitable for systematic MRI scanning, among them various cnidarian and arthropod taxa, brachiopods, various molluscan taxa, echinoderms, as well as all vertebrate clades. However, various phyla in their entirety cannot be considered suitable for this approach mainly due to their small size (e.g., Kinorhyncha) or their unfavorable shape (e.g., Nematomorpha), while other taxa are prone to produce artifacts associated either with their biology (e.g., Echiura) or their anatomy (e.g., Polyplacophora). In order to initiate further uses of MRI in zoology, we outline the principles underlying various applications of this technique such as the use of contrast agents, in vivo MRI, functional MRI, as well as magnetic resonance spectroscopy. Finally, we discuss how future technical developments might shape the use of MRI for the study of zoological specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

BBB:

Blood–brain barrier

BOLD:

Blood oxygenation level-dependent

CA:

Contrast agent

cLSM:

Confocal laser scanning microscopy

CSI:

Chemical shift imaging

CT:

Computed tomography

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

FLASH:

Fast low-angle shot

FMNH:

Field Museum of Natural History

fMRI:

Functional magnetic resonance imaging

FOV:

Field of view

FR :

RARE factor

FSPGR:

Fast spoiled gradient echo

MEMRI:

Manganese-enhanced magnetic resonance imaging

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

NA :

Average number

NMR:

Nuclear magnetic resonance

OPT:

Optical projection tomography

PET:

Positron emission tomography

RARE:

Rapid acquisition with relaxation enhancement

SE:

Spin echo

SIO:

Scripps Institution of Oceanography

SNR:

Signal-to-noise ratio

TA :

Acquisition time

TE :

Echo time

TR :

Repetition time

TSE:

Turbo spin echo

μCT:

Micro-computed tomography

ZMB:

Zoologisches Museum Berlin

ZMH:

Zoologisches Museum Hamburg

References

  • Aggarwal M, Zhang J, Miller MI, Sidman RL, Mori S (2009) Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery. Neuroscience 162:1339–1350

    Article  PubMed  CAS  Google Scholar 

  • Ardenkjar-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH (2003) Increase in signal-to-noise ratio of >10, 000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163

    Article  CAS  Google Scholar 

  • Assheuer J, Sager M (1997) MRI and CT atlas of the dog. Blackwell Science, Berlin

    Google Scholar 

  • Baker M (2010) The whole picture. Nature 463:977–980

    Article  PubMed  CAS  Google Scholar 

  • Baltes C, Radzwill N, Bosshard S, Marek D, Rudin M (2009) Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed 22:834–842

    Article  PubMed  Google Scholar 

  • Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson 103:247–254

    Article  CAS  Google Scholar 

  • Belton PS, Gil AM, Webb GA, Rutledge D (2003) Magnetic resonance in food science: latest developments. RSC Publishing, Cambridge

    Book  Google Scholar 

  • Belton PS, Engelsen SB, Jakobsen HJ, Amin MHG, van den Berg F (2005) Magnetic resonance in food science: the multivariate challenge. RSC Publishing, Cambridge

    Book  Google Scholar 

  • Benveniste H, Blackband SJ (2002) MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog Neurobiol 67:393–420

    Article  PubMed  Google Scholar 

  • Benveniste H, Blackband SJ (2006) Translational neuroscience and magnetic-resonance microscopy. Lancet Neurol 5:536–544

    Article  PubMed  Google Scholar 

  • Berthold P, Elverfeldt D, Fiedler W, Hennig J, Kaatz M, Querner U (2001) Magnetic resonance imaging and spectroscopy (MRI, MRS) of seasonal patterns in body composition: a methodological pilot study in white storks (Ciconia ciconia). J Ornithol 142:63–72

    Article  Google Scholar 

  • Blackband SJ, Stoskopf MK (1990) In vivo nuclear magnetic resonance imaging and spectroscopy of aquatic organisms. Magn Reson Imag 8:191–198

    Article  CAS  Google Scholar 

  • Blamire AM (2008) The technology of MRI–the next 10 years? Br J Radiol 81:601–617

    Article  PubMed  CAS  Google Scholar 

  • Bock C, Frederich M, Wittig RM, Pörtner HO (2001a) Simultaneous observations of haemolymph flow and ventilation in marine spider crabs at different temperatures: a flow weighted MRI study. Magn Reson Imag 19:1113–1124

    Article  CAS  Google Scholar 

  • Bock C, Sartoris FJ, Wittig RM, Pörtner HO (2001b) Temperature dependent pH regulation in stenothermal Antarctic and eurythermal temperate eelpout (Zoarcidae): an in vivo NMR study. Polar Biol 24:869–874

    Article  Google Scholar 

  • Bock C, Sartoris FJ, Pörtner HO (2002) In vivo MR spectroscopy and MR imaging on non-anaesthetized marine fish: techniques and first results. Magn Reson Imag 20:165–172

    Article  Google Scholar 

  • Bock C, Lurmann G, Pörtner HO (2007) Temperature and oxygenation dependence of haemoglobin and hemocyanin relaxation times at 9.4 T. Proc Int Soc Magn Reson Med 15:2749

    Google Scholar 

  • Boistel R, Swoger J, Krzic U, Fernandez V, Gillet B, Reynaud EG (2011) The future of three-dimensional microscopic imaging in marine biology. Marine Ecol. doi:10.1111/j.1439-0485.2011.00442.x

  • Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann NY Acad Sci 508:333–348

    Article  PubMed  CAS  Google Scholar 

  • Bringmann G, Wolf K, Lanz T, Haase A, Hiort J, Proksch P, Müller WEG (1999) Direct demonstration of spatial water distribution in the sponge Suberites domunucla by in vivo NMR imaging. Mar Ecol Prog Ser 189:307–310

    Article  Google Scholar 

  • Brinkley CK, Kolodny NH, Kohler SJ, Sandeman DC, Beltz BS (2005) Magnetic resonance imaging at 9.4 T as a tool for studying neural anatomy in non-vertebrates. J Neurosci Methods 146:124–132

    Article  PubMed  Google Scholar 

  • Brouwer M, Engel DW, Bonaventura J, Johnson GA (1992) In vivo magnetic resonance imaging of the blue crab, Callinectes sapidus: effect of cadmium accumulation in tissues on proton relaxation properties. J Exp Zool 263:32–40

    Article  PubMed  CAS  Google Scholar 

  • Budd GE, Olsson L (2007) Editorial: a renaissance for evolutionary morphology. Acta Zool (Stockholm) 88:1

    Article  Google Scholar 

  • Butcher PA, Broadhurst MK, Hall KC, Cullis BR, Nicoll RG (2009) Scale loss and mortality in angled-and-released Eastern sea garfish (Hyporhamphus australis). ICES J Marine Sci 67:522–529

    Article  Google Scholar 

  • Chanet B, Fusellier M, Baudet J, Madec S, Guintard C (2009) No need to open the jar: a comparative study of magnetic resonance imaging results on fresh and alcohol preserved common carps (Cyprinus carpio (L. 1758), Cyprinidae, Teleostei). Comptes Rendus de Biol 332:413–419

    Article  Google Scholar 

  • Chudek JA, Crook AME, Hubbard SF, Hunter G (1996) Nuclear magnetic resonance microscopy of the development of the parasitoid wasp Venturia canescens within its host moth Plodia interpunctella. Magn Reson Imag 14:679–686

    Article  CAS  Google Scholar 

  • Conner WE, Johnson GA, Coffer GP, Dittrich K (1988) Magnetic resonance microscopy—in vivo sectioning of a developing insect. Experientia 44:11–12

    Article  PubMed  CAS  Google Scholar 

  • Cooper JE (2011) Anesthesia, analgesia, and euthanasia of invertebrates. ILAR J 52:196–204

    PubMed  CAS  Google Scholar 

  • Corfield JR, Wild JM, Cowan BR, Parsons S, Kubke MF (2008) MRI of postmortem specimens of endangered species for comparative brain anatomy. Nat Protoc 3:597–605

    Article  PubMed  CAS  Google Scholar 

  • Czisch M, Coppack T, Berthold P, Auer DP (2001) In vivo magnetic resonance imaging of the reproductive organs in a passerine bird species. J Avian Biol 32:278–281

    Article  Google Scholar 

  • Davenel A, Quellec S, Pouvreau S (2006) Noninvasive characterization of gonad maturation and determination of the sex of Pacific oysters by MRI. Magn Reson Imag 24:1103–1110

    Article  Google Scholar 

  • Davenel A, González R, Suquet M, Quellec S, Robert R (2010) Individual monitoring of gonad development in the European flat oyster Ostrea edulis by in vivo magnetic resonance imaging. Aquaculture 307:165–169

    Article  Google Scholar 

  • De Groof G, Verhoye M, van Meir V, Tindemans I, Leemans A, van der Linden A (2006) In vivo diffusion tensor imaging (DTI) of brain subdivisions and vocal pathways in songbirds. Neuroimage 29:754–763

    Article  PubMed  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  PubMed  CAS  Google Scholar 

  • Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sorensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172

    Article  Google Scholar 

  • Elliott I, Skerritt G (2010) Handbook of small animal MRI. Wiley-Blackwell, Oxford

    Google Scholar 

  • Endo H, Yamagiwa D, Arishima K, Yamamoto M, Sasaki M, Hayashi Y, Kamiya T (1999) MRI examination of trachea and bronchi in the Ganges river dolphin (Platanista gangetica). J Vet Med Sci 61:1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Farhat IA, Belton PS, Webb GA (2007) Magnetic resonance in food science: from molecules to man. RSC Publishing, Cambridge

    Book  Google Scholar 

  • Favila ME, Fresneau D, Gonord P, Ruaud JP (2004) Nuclear magnetic resonance microscopy of the internal structure of the carrion rolling scarab Canthon cyanellus cyanellus (Scarabaeidae: Scarabaeinae). Coleopt Bull 58:1125–1131

    Google Scholar 

  • Fernández M, Bock C, Pörtner HO (2000) The cost of being a caring mother: the ignored factor in the reproduction of marine invertebrates. Ecol Lett 3:487–494

    Article  Google Scholar 

  • Forbes JG, Morris HD, Wang K (2006) Multimodal imaging of the sonic organ of Porichthys notatus, the singing midshipman fish. Magn Reson Imag 24:321–331

    Article  Google Scholar 

  • Forbes SC, Slade JM, Francis RM, Meyer RA (2009) Comparison of oxidative capacity among leg muscles in humans using gated 31P 2-D chemical shift imaging. NMR Biomed 22:1063–1071

    PubMed  CAS  Google Scholar 

  • Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9:79–93

    Article  PubMed  CAS  Google Scholar 

  • Fresneau D, Dantas de Araujo C, Kan SK, Gonord P, Jallon JM (1991) Premières tentatives d’imagerie RMN sur des insectes. Actes des Colloques Insectes Sociaux 7:195–199

    Google Scholar 

  • Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt R, Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–943

    Article  PubMed  CAS  Google Scholar 

  • Garwood M, De la Barre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153:155–177

    Article  PubMed  CAS  Google Scholar 

  • Gassner G, Lohmann JAB (1987) Combined proton NMR imaging and spectral analysis of locust embryonic development. Proc Natl Acad Sci USA 84:5297–5300

    Article  PubMed  CAS  Google Scholar 

  • Gavin PR, Bagley RS (2010) Practical small animal MRI. Wiley-Blackwell, Oxford

    Google Scholar 

  • Geoghegan IE, Chudek JA, Mackay RL, Lowe C, Moritz S, McNicol RJ, Birch ANE, Hunter G, Majerus MEN (2000) Study of anatomical changes in Coccinella septempunctata (Coleoptera: Coccinellidae) induced by diet and by infection with the larva of Dinocampus coccinellae (Hymenoptera: Braconidae) using magnetic resonance microimaging. Eur J Entomol 97:457–461

    CAS  Google Scholar 

  • Giribet G (2010) A new dimension in combining data? The use of morphology and phylogenomic data in metazoan systematics. Acta Zool (Stockholm) 91:11–19

    Article  Google Scholar 

  • Glover P, Mansfield P (2002) Limits to magnetic resonance microscopy. Rep Prog Phys 65:1489–1511

    Article  Google Scholar 

  • Golman K, Axelsson O, Johannesson H, Mansson S, Olofsson C, Petersson JS (2001) Parahydrogen-induced polarization in imaging: subsecond 13C angiography. Magn Reson Med 46:1–5

    Article  PubMed  CAS  Google Scholar 

  • Goodman BA, Gordon SC, Chudek JA, Hunter G, Woodford JAT (1995) Nuclear magnetic resonance microscopy as a non-invasive tool to study the development of lepidopteran pupae. J Insect Physiol 41:419–424

    Article  CAS  Google Scholar 

  • Gozansky EK, Ezell EL, Budelmann BU, Quast MJ (2003) Magnetic resonance histology: in situ single cell imaging of receptor cells in an invertebrate (Lolliguncula brevis, Cephalopoda) sense organ. Magn Reson Imag 21:1019–1022

    Article  Google Scholar 

  • Granot J (1986) Selected volume excitation using stimulated echoes (VEST): application to spatially localized spectroscopy and imaging. J Magn Reson 70:488–492

    CAS  Google Scholar 

  • Grant SC, Aiken NR, Plant HD, Gibbs S, Mareci TH, Webb AG, Blackband SJ (2000) NMR spectroscopy of single neurons. Magn Reson Med 44:19–22

    Article  PubMed  CAS  Google Scholar 

  • Gujonsdottir M, Belton PS, Webb GA (2009) Magnetic resonance in food science: challenges in a challenging world. RSC Publishing, Cambridge

    Google Scholar 

  • Haddad D, Schaupp F, Brandt R, Manz G, Menzel R, Haase A (2004) NMR imaging of the honeybee brain. J Insect Sci 4:7

    PubMed  CAS  Google Scholar 

  • Hallock KJ (2008) Magnetic resonance microscopy of flows and compressions of the circulatory, respiratory, and digestive systems in pupae of the tobacco hornworm, Manduca sexta. J Insect Sci 8:10

    Google Scholar 

  • Hart AG, Bowtell RW, Köckenberger W, Wenseleers T, Ratnieks FLW (2003) Magnetic resonance imaging in entomology: a critical review. J Insect Sci 3:5

    PubMed  CAS  Google Scholar 

  • Herberholz J, Mims CJ, Zhang X, Hu X, Edwards DH (2004) Anatomy of a live invertebrate revealed by manganese-enhanced magnetic resonance imaging. J Exp Biol 207:4543–4550

    Article  PubMed  Google Scholar 

  • Hermann EJ, Hattingen E, Krauss JK, Marquardt G, Pilatus U, Franz K, Setzer M, Gasser T, Tews DS, Zanella FE, Seifert V, Lanfermann H (2008) Stereotactic biopsy in gliomas guided by 3-Tesla 1H-chemical-shift imaging of choline. Stereotact Funct Neurosurg 86:300–307

    Article  PubMed  Google Scholar 

  • Holliman FM, Davis D, Bogan AE, Kwak TJ, Cope WG, Levine JF (2008) Magnetic resonance imaging of live freshwater mussels (Unionidae). Invertebr Biol 127:396–402

    Article  Google Scholar 

  • Hopkins WD, Pilcher DW, MacGregor L (2000) Sylvian fissure asymmetries in nonhuman primates revisited: a comparative MRI study. Brain Behav Evol 56:293–299

    Article  PubMed  CAS  Google Scholar 

  • Hörnschemeyer T, Goebbels J, Weidemann G, Faber C, Haase A (2006) The head morphology of Ascioplaga mimeta (Coleoptera: Archostemata) and the phylogeny of Archostemata. Eur J Entomol 103:409–423

    Google Scholar 

  • Hsu EW, Aiken NR, Blackband SJ (1996) Nuclear magnetic resonance microscopy of single neurons under hypotonic perturbation. Am J Physiol 271:C1895–C1900

    PubMed  CAS  Google Scholar 

  • Iwama GK, McGeer JC, Pawluk MP (1989) The effects of five fish anaesthetics on acid-base balance, hematocrit, blood gases, cortisol, and adrenaline in rainbow trout. Can J Zool 67:2065–2073

    Article  CAS  Google Scholar 

  • Jakob P (2011) Small animal magnetic resonance imaging: basic principles, instrumentation and practical issue. In: Kiessling F, Pichler BJ, Hauff P (eds) Small animal imaging. Basics and practical guide. Springer, Berlin, pp 151–164

    Google Scholar 

  • Jasanoff A (2005) Functional MRI using molecular imaging agents. Trends Neurosci 28:120–126

    Google Scholar 

  • Jasanoff A, Sun PZ (2002) In vivo magnetic resonance microscopy of brain structure in unanesthetized flies. J Magn Reson 158:79–85

    Article  PubMed  CAS  Google Scholar 

  • Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. Am J Neuroradiol 25:356–369

    PubMed  Google Scholar 

  • Kabli S, Alia A, Spaink HP, Verbeek FJ, De Groot HJM (2006) Magnetic resonance microscopy of the adult zebrafish. Zebrafish 3:431–439

    Article  PubMed  Google Scholar 

  • Kaufman JA, Ahrens ET, Laidlaw DH, Zhang S, Allman JM (2005) Anatomical analysis of an Aye–Aye brain (Daubentonia madagascariensis, Primates: Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging. Anat Rec A 287:1026–1037

    Google Scholar 

  • Kiessling F, Pichler BJ, Hauff P (2011) Small animal imaging. Basics and practical guide. Springer, Berlin

    Google Scholar 

  • Kim S, Pickup S, Hsu O, Poptani H (2009) Enhanced delineation of white matter structures of the fixed mouse brain using Gd-DTPA in microscopic MRI. NMR Biomed 22:303–309

    Article  PubMed  Google Scholar 

  • Kuoni W, Augustiny N, Rübel A (1993) Application of magnetic resonance imaging in reptile medicine. MAGMA 1:61–63

    Article  Google Scholar 

  • Lannig G, Bock C, Sartoris FJ, Pörtner HO (2004) Oxygen limitation of thermal tolerance in cod, Gadus morhua L., studied by magnetic resonance imaging and on-line venous oxygen monitoring. Am J Physiol Regul Integr Comp Physiol 287:R902–R910

    Article  PubMed  CAS  Google Scholar 

  • Lannig G, Cherkasov AS, Pörtner HO, Bock C, Sokolova IM (2008) Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin). Am J Physiol Regul Integr Comp Physiol 294:1338–1346

    Article  CAS  Google Scholar 

  • Lauridsen H, Hansen K, Wang T, Agger P, Andersen JL, Knudsen PS, Rasmusseun AS, Uhrenholt L, Pedersen M (2011) Inside out: modern imaging techniques to reveal animal anatomy. PLoS One 6:e17879

    Article  PubMed  CAS  Google Scholar 

  • Lazar N (2008) The statistical analysis of functional MRI data. Springer, Berlin

    Google Scholar 

  • Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  CAS  Google Scholar 

  • Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imag 24:478–488

    Article  Google Scholar 

  • Lee SC, Mietchen D, Cho JH, Kim YS, Kim C, Hong KS, Lee C, Kang D, Lee W, Cheong C (2007) In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards. Differentiation 75:84–92

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Tikunov A, Stoskopf MK, Macdonald JM (2010) Applications of chemical shift imaging to marine sciences. Marine Drugs 8:2369–2383

    Article  PubMed  CAS  Google Scholar 

  • Lin YJ, Koretsky AP (1997) Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38:378–388

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Z, Bansal R, Peterson BS, Kangarlu A (2008) Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. Neuroimage 40:148–159

    Article  PubMed  Google Scholar 

  • Lohmann JAB, Gassner G (1987) Proton NMR in vivo imaging: a tool for studying embryo development of small organisms. Ann NY Acad Sci 508:435–436

    Article  Google Scholar 

  • Lohmann JAB, Ratcliffe RG (1988) Prospects for NMR imaging in the study of biological morphogenesis. Experientia 44:666–672

    Article  Google Scholar 

  • Louie AY, Hüber MM, Ahrens ET, Rothbächer U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325

    Article  PubMed  CAS  Google Scholar 

  • Mapelli M, Greco F, Gussoni M, Consonni R, Zetta L (1997) Application of NMR microscopy to the morphological study of the silkworm, Bombyx mori, during its metamorphosis. Magn Reson Imag 15:693–700

    Article  CAS  Google Scholar 

  • Marino L, Sudheimer KD, Murphy TL, Davis KK, Pabst DA, McLellan WA, Rilling JK, Johnson JI (2001) Anatomy and three-dimensional reconstructions of the brain of a bottlenose dolphin (Tursiops truncatus) from magnetic resonance images. Anat Rec 264:397–414

    Article  PubMed  CAS  Google Scholar 

  • Marino L, Sudheimer KD, Pabst DA, McLellan WA, Filsoof D, Johnson JI (2002) Neuroanatomy of the common dolphin (Delphinus delphis) as revealed by magnetic resonance imaging (MRI). Anat Rec 268:411–429

    Article  PubMed  Google Scholar 

  • Marino L, Sudheimer K, Sarko D, Sirpenski G, Johnson JI (2003a) Neuroanatomy of the harbor porpoise (Phocoena phocoena) from magnetic resonance images. J Morphol 257:308–347

    Article  PubMed  Google Scholar 

  • Marino L, Sudheimer K, Pabst DA, McLellan WA, Johnson JI (2003b) Magnetic resonance images of the brain of a dwarf sperm whale (Kogia simus). J Anat 203:57–76

    Article  PubMed  CAS  Google Scholar 

  • Marino L, Sherwood CC, Delman BN, Tang CY, Naidich TP, Hof PR (2004) Neuroanatomy of the killer whale (Orcinus orca) from magnetic resonance images. Anat Rec A 281:1256–1263

    Article  Google Scholar 

  • Mark FC, Bock C, Pörtner HO (2002) Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and 31P-MRS. Am J Physiol Regul Integr Comp Physiol 283:R1254–R1262

    PubMed  CAS  Google Scholar 

  • Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high resolution spectroscopy by “four-dimensional” NMR. J Magn Reson 51:147–152

    CAS  Google Scholar 

  • Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11

    Article  PubMed  Google Scholar 

  • Michaelis T, Watanabe T, Natt O, Boretius S, Frahm J, Utz S, Schachtner J (2005) In vivo 3D MRI of insect brain: cerebral development during metamorphosis of Manduca sexta. Neuroimage 24:596–602

    Article  PubMed  Google Scholar 

  • Mietchen D, Keupp H, Manz B, Volke F (2005) Non-invasive diagnostics in fossils—magnetic resonance imaging of pathological belemnites. Biogeosciences 2:133–140

    Article  Google Scholar 

  • Mietchen D, Aberhan M, Manz B, Hampe O, Mohr B, Neumann C, Volke F (2008a) Three-dimensional magnetic resonance imaging of fossils across taxa. Biogeosciences 5:25–41

    Article  Google Scholar 

  • Mietchen D, Manz B, Volke F, Storey K (2008b) In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy. PLoS One 12:e3826

    Google Scholar 

  • Modo M, Bulte JWH (2011) Magnetic resonance neuroimaging. Methods and protocols. Springer, Berlin

    Book  Google Scholar 

  • Mooney TA, Hanlon RT, Christensen-Dalsgaard J, Madsen PT, Ketten DR, Nachtigall PE (2010) Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure. J Exp Biol 213:3748–3759

    Article  PubMed  Google Scholar 

  • Müller WEG, Kaluzhnaya OV, Belikov SI, Rothenberger M, Schröder HC, Reiber A, Kaandorp JA, Manz B, Mietchen D, Volke F (2006) Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. J Struct Biol 153:31–41

    Article  PubMed  Google Scholar 

  • Murray RC (2011) Equine MRI. Blackwell-Wiley, Oxford

    Google Scholar 

  • Natt O, Frahm J (2005) In vivo magnetic resonance imaging: insights into structure and function of the central nervous system. Meas Sci Technol 16:R17–R36

    Article  CAS  Google Scholar 

  • Neustadter DM, Drushel RF, Crago PE, Adams BW, Chiel HJ (2002) A kinematic model of swallowing in Aplysia californica based on radula/odontophore kinematics and in vivo magnetic resonance images. J Exp Biol 205:3177–3206

    PubMed  Google Scholar 

  • Nott KP, Evans SD, Hall LD (1999) Quantitative magnetic resonance imaging of fresh and frozen-thawed trout. Magn Reson Imag 17:445–455

    Article  CAS  Google Scholar 

  • Novakovic VA, Sutton GP, Neustadter DM, Beer RD, Chiel HJ (2006) Mechanical reconfiguration mediates swallowing and rejection in Aplysia californica. J Comp Physiol A 192:857–870

    Article  Google Scholar 

  • Null B, Liu CW, Hedehus M, Conolly S, Davis RW (2008) High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla. PLoS One 3:e2817

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  • Ordidge RJ, Connelly A, Lohman JAB (1986) Image-selected in vivo spectroscopy (ISIS)—a new technique for spatially selective NMR spectroscopy. J Magn Reson 66:283–294

    CAS  Google Scholar 

  • Perry CN, Cartamil DP, Bernal D, Sepulveda CA, Theilmann RJ, Graham JB, Frank LR (2007) Quantification of red myotomal muscle volume and geometry in the shorfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis) using T1-weighted magnetic resonance imaging. J Morphol 268:284–292

    Article  PubMed  Google Scholar 

  • Petiet A, Hedlund L, Johnson GA (2007) Staining methods for magnetic resonance microscopy of the rat fetus. J Magn Reson Imag 25:1192–1198

    Article  Google Scholar 

  • Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

    Article  PubMed  CAS  Google Scholar 

  • Pohlmann A, Möller M, Decker H, Schreiber WG (2007) MRI of tarantulas: morphological and perfusion imaging. Magn Reson Imag 25:129–135

    Article  Google Scholar 

  • Pohmann R, von Kienlin M, Haase A (1997) Theoretical evaluation and comparison of fast chemical shift imaging methods. J Magn Reson 129:145–160

    Article  PubMed  CAS  Google Scholar 

  • Poirier C, Vellema M, Verhoye M, van Meir V, Wild JM, Balthazart J, van der Linden A (2008) A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates. Neuroimage 41:1–6

    Article  PubMed  Google Scholar 

  • Pouvreau S, Rambeau M, Cochard JC, Robert R (2006) Investigation of marine bivalve morphology by in vivo MR imaging: first anatomical results of a promising technique. Aquaculture 259:415–423

    Article  Google Scholar 

  • Price WS, Kobayashi A, Ide H, Natori S, Arata Y (1999) Visualizing the postembryonic development of Sarcophaga peregrina (flesh fly) by NMR microscopy. Physiol Entomol 24:386–390

    Article  Google Scholar 

  • Quast MJ, Neumeister H, Ezell EL, Budelmann BU (2001) MR microscopy of cobalt-labeled nerve cells and pathways in an invertebrate brain (Sepia officinalis, Cephalopoda). Magn Reson Med 45:575–579

    Article  PubMed  CAS  Google Scholar 

  • Raiti P, Haramati N (1997) Magnetic resonance imaging and computerized tomography of a gravid leopard tortoise (Geochelone pardalis pardalis) with metabolic bone disease. J Zoo Wildl Med 28:189–197

    PubMed  CAS  Google Scholar 

  • Rasmussen AS, Lauridsen H, Laustsen C, Jensen BG, Pedersen SF, Uhrenholt L, Boel LWT, Uldbjerg N, Wang T, Pedersen M (2010) High-resolution ex vivo magnetic resonance angiography: a feasibility study on biological and medical tissues. BMC Physiol 10:3

    Article  PubMed  CAS  Google Scholar 

  • Renou JP, Belton PS, Webb GA (2011) Magnetic resonance in food science: an exciting future. RSC Publishing, Cambridge

    Google Scholar 

  • Ridgway S, Houser D, Finneran J, Carder D, Keogh M, van Bonn W, Smith C, Scadeng M, Dubowitz D, Mattrey R, Hoh C (2006) Functional imaging of dolphin brain metabolism and blood flow. J Exp Biol 209:2902–2910

    Article  PubMed  Google Scholar 

  • Rogers BL, Lowe CG, Fernández-Juricic E, Frank LR (2008) Utilizing magnetic resonance imaging (MRI) to assess the effects of angling-induced barotrauma on rockfish (Sebastes). Can J Fish Aquac Sci 65:1245–1249

    Article  Google Scholar 

  • Rowe T, Frank LR (2011) The disappearing third dimension. Science 331:712–714

    Article  PubMed  CAS  Google Scholar 

  • Rubinsky B, Wong STS, Hong JS, Gilbert J, Roos M, Storey KB (1994a) 1H magnetic resonance imaging of freezing and thawing in freeze-tolerant frogs. Am J Physiol 266:R1771–R1777

    PubMed  CAS  Google Scholar 

  • Rubinsky B, Hong JS, Storey KB (1994b) Freeze tolerance in turtles: visual analysis by microscopy and magnetic resonance imaging. Am J Physiol 267:R1078–R1088

    PubMed  CAS  Google Scholar 

  • Runcie RM, Dewar H, Hawn DR, Frank LR, Dickson KA (2009) Evidence for cranial endothermy in the opah (Lampris guttatus). J Exp Biol 212:461–470

    Article  PubMed  Google Scholar 

  • Saleem KS, Pauls JM, Augath M, Trinath T, Prause BA, Hashikawa T, Logothetis NK (2002) Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34:685–700

    Article  PubMed  CAS  Google Scholar 

  • Sbarbati A, Leclerq F, Antonakis K, Osculati F (1992) Magnetic resonance imaging of the saccular otolithic mass. J Anat 181:369–732

    PubMed  Google Scholar 

  • Schmidt-Rhaesa A (2009) Morphology and deep metazoan phylogeny. Zoomorphology 128:199–200

    Article  Google Scholar 

  • Schröder L, Faber C (2011) In vivo NMR imaging. Methods and protocols. Methods in Molecular Biology 771. Humana Press, New York

  • Schröder L, Lowery TJ, Hilty C, Wemmer DE, Pines A (2006) Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314:446–449

    Article  PubMed  CAS  Google Scholar 

  • Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 30:10901–10906

    Article  Google Scholar 

  • Silva AC, Lee JH, Aoki I, Koretsky AP (2004) Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed 17:532–543

    Article  PubMed  CAS  Google Scholar 

  • Skibbe U, Christeller JT, Eccles CD, Laing WA, Callaghan PT (1995) A method to distinguish between chemical shift and susceptibility effects in NMR micoscopy and its application to insect larvae. Magn Reson Imag 13:471–479

    Article  CAS  Google Scholar 

  • Slowik TJ, Green BL, Thorvilson HG (1997) Detection of magnetism in the red imported fire ant (Solenopsis invicta) using magnetic resonance imaging. Bioelectromagnetics 18:396–399

    Article  PubMed  CAS  Google Scholar 

  • Stecyk JAW, Bock C, Overgaard J, Wang T, Farrell AP, Pörtner HO (2009) Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart. Am J Physiol Regul Integr Comp Physiol 297:756–768

    Article  CAS  Google Scholar 

  • Straub J, Jurina K (2001) Magnetic resonance imaging in chelonians. Semin Avian Exotic Pet Med 10:181–186

    Article  Google Scholar 

  • Synthesys Network Activity F Pilot Study “Report on the technical parameters of MRI”. http://www.synthesys.info/na_f.htm

  • Takahashi MK, Kato K, Matsushita K, Umeda M, Nishina M, Hori E, Takahashi M, Oshaka A (1989) 1H-MRI and in vivo 31P-MRS study of diseased state of smoky-brown cockroach infected with cockroach densovirus. Jpn J Sanit Zool 40:289–293

    CAS  Google Scholar 

  • Tindemans I, Verhoye M, Balthazart J, van der Linden A (2003) In vivo dynamic ME-MRI reveals differential functional responses of RA- and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Eur J Neurosci 18:3352–3360

    Article  PubMed  CAS  Google Scholar 

  • Tomanek B, Jasinski A, Sulek Z, Muszynska J, Kulnowski P, Kwiecinski S, Krzyzak A, Skorka T, Kibinski J (1996) Magnetic resonance microscopy of internal structure of drone and queen honey bees. J Apic Res 35:3–9

    Google Scholar 

  • Tyszka JM, Fraser SE, Jacobs RE (2005) Magnetic resonance microscopy: recent advances and applications. Curr Opin Biotechnol 16:93–99

    Article  PubMed  CAS  Google Scholar 

  • Ullmann JF, Cowin G, Kurniawan ND, Collin SP (2010) Magnetic resonance histology of the adult zebrafish brain: optimization of fixation and gadolinium contrast enhancement. NMR Biomed 23:341–346

    PubMed  Google Scholar 

  • Ulmer S, Jansen O (2010) fMRI. Basics and clinical applications. Springer, Berlin

    Google Scholar 

  • Valente ALS, Cuenca R, Zamora MA, Parga ML, Lavin S, Alegre F, Marco I (2006) Sectional anatomic and magnetic resonance imaging of coelomic structures of loggerhead sea turtles. Am J Vet Res 67:1347–1353

    Article  PubMed  Google Scholar 

  • Van de Moortele PF, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Ugurbil K (2005) B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518

    Article  PubMed  Google Scholar 

  • Van den Burg EH, Verhoye M, Peeters RR, Meek J, Flik G, van der Linden A (2006) Activation of a sensorimotor pathway in response to a water temperature drop in a teleost fish. J Exp Biol 209:2015–2024

    Article  PubMed  Google Scholar 

  • Van der Linden A, Verhoye M, Pörtner HO, Bock C (2004) The strengths of in vivo magnetic resonance imaging (MRI) to study environmental adaptational physiology in fish. Magn Reson Mater Phys Biol Med 17:236–248

    Google Scholar 

  • Van der Linden A, van Camp N, Ramos-Cabrer P, Hoehn M (2007) Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition. NMR Biomed 20:522–545

    Article  PubMed  CAS  Google Scholar 

  • Van der Linden A, van Meir V, Boumans T, Poirier C, Balthazart J (2009) MRI in small brains displaying extensive plasticity. Trends Neurosci 32:257–266

    Article  PubMed  CAS  Google Scholar 

  • Veliyulin E, Borge A, Singstad T, Gribbestad I, Erikson U (2006) Post mortem studies of fish using magnetic resonance imaging. Mod Magn Reson 1:959–966

    Article  Google Scholar 

  • Veliyulin E, Felberg HS, Digre H, Martinez I (2007) Non-destructive nuclear magnetic resonance image study of belly bursting in herring (Clupea harengus). Food Chem 101:1545–1551

    Article  CAS  Google Scholar 

  • Von Brand E, Cisterna M, Merino G, Uribe E, Palma-Rojas C, Rosenblitt M, Albornoz JL (2009) Non-destructive method to study the internal anatomy of the Chilean scallop Argopecten purpuratus. J Shellfish Res 28:325–327

    Article  Google Scholar 

  • Walker TG, Happer W (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 69:629–642

    Article  CAS  Google Scholar 

  • Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE, Duce S, Ellenberg J, Fraser A, Hamilton N, Pieper S, Ragan MA, Schneider JE, Tomancak P, Hériche JK (2010) Visualization of image data from cells to organisms. Nat Methods Suppl 7:S26–S41

    Article  CAS  Google Scholar 

  • Wang LC, Wan DP, Jung SM, Chen CC, Wong HF, Wan YL (2005) Magnetic resonance imaging findings in the brains of rabbits infected with Angiostrongylus cantonensis: a long-term investigation. J Parasitol 91:1237–1239

    Article  PubMed  Google Scholar 

  • Watanabe T, Schachtner J, Krizan M, Boretius S, Frahm J, Michaelis T (2006) Manganese-enhanced 3D MRI of established and disrupted synaptic activity in the developing insect brain in vivo. J Neurosci Methods 158:50–55

    Article  PubMed  CAS  Google Scholar 

  • Webb GA, Belton PS, Gil AM, Delgadillo I (2001) Magnetic resonance in food science: a view to the future. RSC Publishing, Cambridge

    Book  Google Scholar 

  • Wecker S, Hörnschemeyer T, Hoehn M (2002) Investigation of insect morphology by MRI: assessment of spatial and temporal resolution. Magn Reson Imag 20:105–111

    Article  Google Scholar 

  • Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H (2003) Tissue-specific MR contrast agents. Eur J Radiol 46:33–44

    Article  PubMed  Google Scholar 

  • Westheide W, Rieger R (2007) Spezielle Zoologie, Teil 1: Einzeller und wirbellose Tiere. 2. Auflage. Spektrum Akademischer Verlag, München

    Google Scholar 

  • Westheide W, Rieger R (2010) Spezielle Zoologie, Teil 2: Wirbel- oder Schädeltiere. 2. Auflage. Spektrum Akademischer Verlag, München

    Google Scholar 

  • Zhang X, Schneider JE, Portnoy S, Bhattacharya S, Henkelman RM (2010) Comparative SNR for high-throughput mouse embryo MR microscopy. Magn Reson Med 63:1703–1707

    Article  PubMed  Google Scholar 

  • Ziegler A (in press) Broad application of non-invasive imaging techniques to echinoids and other echinoderm taxa. In: Proceedings of the 7th European Conference on Echinoderms. Lecture Notes Proceedings. Springer, Berlin

  • Ziegler A, Mueller S (2011) Analysis of freshly fixed and museum invertebrate specimens using high-resolution, high-throughput MRI. In: Schröder L, Faber C (eds) In vivo NMR imaging. Methods in Molecular Biology 771. Humana Press, New York, pp 633–651

    Chapter  Google Scholar 

  • Ziegler A, Faber C, Mueller S, Bartolomaeus T (2008) Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging. BMC Biol 6:33

    Article  PubMed  Google Scholar 

  • Ziegler A, Bartolomaeus T, Mueller S (2010a) Sea urchin (Echinoidea) anatomy revealed by magnetic resonance imaging and 3D visualization. In: Harris LG, Boettger SA, Walker CW, Lesser MP (eds) Echinoderms: Durham. CRC Press, Boca Raton, pp 305–310

    Google Scholar 

  • Ziegler A, Ogurreck M, Steinke T, Beckmann F, Prohaska S, Ziegler A (2010b) Opportunities and challenges for digital morphology. Biol Direct 5:45

    Article  PubMed  Google Scholar 

  • Ziegler A, Mooi R, Rolet G, De Ridder C (2010c) Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea). BMC Evol Biol 10:313

    Article  PubMed  Google Scholar 

  • Ziegler A, Mietchen D, Faber C, von Hausen W, Schöbel C, Sellerer M, Ziegler A (2011) Effectively incorporating selected multimedia content into medical publications. BMC Med 9:17

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Thomas Bartolomaeus (Bonn, Germany), Sven Gemballa (Tübingen, Germany), Matthias Glaubrecht (Berlin, Germany), Alexander Gruhl (London, United Kingdom), Alexander Haas (Hamburg, Germany), Markus Koch (Bonn, Germany), Janina Lehrke (Bonn, Germany), Carsten Lüter (Berlin, Germany), Christian Müller (Frankfurt, Germany), Thomas Stach (Berlin, Germany), and Esther Ullrich-Lüter (Berlin, Germany) for specimen supply. We also gratefully acknowledge editorial support by Christopher Witte (Berlin, Germany). Bivalve research was supported by AToL grants from the National Science Foundation, USA, to Rüdiger Bieler (#0732854), Paula M. Mikkelsen (#0732860), and Gonzalo Giribet (#0732903). We are grateful to Thomas Bartolomaeus, Doug Eernisse and one anonymous reviewer for their supportive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ziegler.

Additional information

Communicated by T. Bartolomaeus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, A., Kunth, M., Mueller, S. et al. Application of magnetic resonance imaging in zoology. Zoomorphology 130, 227–254 (2011). https://doi.org/10.1007/s00435-011-0138-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-011-0138-8

Keywords

Navigation