Skip to main content
Log in

Organization of the epistome in Phoronopsis harmeri (Phoronida) and consideration of the coelomic organization in Phoronida

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Results provided by modern TEM methods indicate the existence of the lophophoral and trunk coelomes but not of the preoral coelom in Phoronida. In the present work, the epistome in Phoronopsis harmeri was studied by histological and ultrastructural methods. Two kinds of cells were found in the frontal epidermis: supporting and glandular. The coelomic compartment is shown to be inside the epistome. This compartment has a complex shape, consists of a central part and two lateral branches, and contacts the lophophoral coelom, forming two complete dissepiments on the lateral sides and a partition with many holes in the center. TEM reveals that some portions of the incomplete partition are organized like a mesentery, with the two layers of cells separated by ECM. The myoepithelial cells of the coelomic lining form the circular and radial musculature of the epistome. Numerous amoebocytes occur in the coelom lumen. The tip of the epistome and its dorso-lateral parts lack a coelomic cavity and are occupied by ECM and muscle cells. The fine structure of the T-shaped vessel is described, and its localization inside lophophoral coelom is demonstrated. We assert that the cavity inside the epistome is the preoral coelom corresponding to the true preoral coelom of the larva of this species. Proving this assertion will require additional study of metamorphosis in this species. To clarify the patterns of coelom organization in phoronids, we discuss the bipartite coelomic system in Phoronis and the tripartite coelomic system in Phoronopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bartolomaeus T (2001) Ultrastructure and formation of the body cavity lining in Phoronis muelleri (Phoronida, Lophophorata). Zoomorph 120(3):135–148

    Article  Google Scholar 

  • Benito J, Pardos F (1997) Hemichordata. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of Invertebrates. Vol. 15. Hemichordata, chaetognata, and the invertebrate chordates. Wiley, New York, pp 15–102

    Google Scholar 

  • Chipman AD (2010) Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. BioEssays 32:60–70. doi:10.1002/bies.200900130

    Article  PubMed  CAS  Google Scholar 

  • Couso J (2009) Segmentation, metamerism and the Cambrian explosion. Int J Dev Biol 53:1305–1316. doi:10.1387/ijdb.072425jc

    Article  PubMed  Google Scholar 

  • Cowles RP (1904) Origin and fate of the body-cavities and the nephridia of the Actinotrocha. Ann Mag Nat Hist 14:69–78

    Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi:10.1038/nature06614

    Article  PubMed  CAS  Google Scholar 

  • Emig CC (1977) Sur la structure des parois de l’appareil circulatore de Phoronis psammophila Cori (Phoronida, Lophophorata). Zoomorphol 87:147–153

    Article  Google Scholar 

  • Emig CC, Siewing R (1975) The epistome of Phoronis psammophila (Phoronida). Zool Anz 194(1/2):47–54

    Google Scholar 

  • Grobe P (2008) http://www.diss.fu-berlin.de/2008/81/chapter2.pdf. Accepted 30may 2010

  • Gruhl A, Grobe P, Bartolomaeus T (2005) Fine structure of the epistome in Phoronis ovalis: significance for the coelomic organization in Phoronida. Invert Biol 124(4):332–343

    Article  Google Scholar 

  • Gruhl A, Wegener I, Bartolomaeus T (2009) Ultrastructure of the body cavities in Phylactolaemata (Bryozoa). J Morphol 270(3):306–318

    Article  PubMed  Google Scholar 

  • Halanych KM, Bacheller JD, Aguinaldo AM, Liva SM, Hillis DM (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643

    Article  PubMed  CAS  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, Wiens M, Müller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc Biol Sci 276:4261–4270

    Article  PubMed  Google Scholar 

  • Herrmann K (1980) The regionation of Phoronis muelleri (Tentaculata). Zool Jahrb Anat 103(2):234–249

    Google Scholar 

  • Herrmann K (1986) Ontogenesis of Phoronis muelleri (Tentaculata) with a special sight for differentiation of mesoderm and phylogenesis of coelom. Zool Jahrb Anat 114(4):441–463

    Google Scholar 

  • Hyman LH (1959) Phoronida. In: Boell EJ (ed) The invertebrates. V. 5. Smaller coelomate groups. McGraw-Hill, New York, pp 228–274

  • Menon KR (1902) Notes of Actinotrocha. Q J Microsc Sci 45:473–484

    Google Scholar 

  • Paps J, Baguñà J, Riutort M (2010) Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes. Proc R Soc 276:1245–1254. doi:10.1098/rspb.2008.1574

  • Peterson KJ, Eernisse DJ (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol Dev 3:170–205

    Article  PubMed  CAS  Google Scholar 

  • Pross A (1974) Untersuchugen uber die Muskulatur des Epistoms der Phoroniden (Phoronis ijimai Oka [Phoronidea]). Zool Jahrb Anat 92:391–403

    Google Scholar 

  • Pross A (1978) Motion of epistom in Phoronis ijimai (Phoronida). Zool Jahrb Anat 99:54–58

    Google Scholar 

  • Selys-Longchamps M (1907) Phoronis. Fauna und Flora des Golfes von Neapel. Monogr 30:280

    Google Scholar 

  • Siewing R (1974) Morphologische Untersuchungen zum Archicoelomatenproblem. The body segmentation in Phoronis muelleri de Selys-Longchamps (Phoronidea) ontogenese—larve—metamorphose—adultus. Zool Jahrb Anat 92(2):275–318

    Google Scholar 

  • Siewing R (1980) Das Archicoelomatenkonzept. Zool Jahrb Anat Ont 103:439–482

    Google Scholar 

  • Temereva EN (2006) Trimeric organization of the larval coelom in phoronids. Abst VIIth Int Larv Biol Symp, p 42

  • Temereva EN (2009) New data on distribution, morphology and taxonomy of phoronid larvae (Phoronida, Lophophorata). Invert Zool 6(1):1–25

    Google Scholar 

  • Temereva EN (2010) The digestive tract of actinotroch larvae (Lophotrochozoa, Phoronida): anatomy, ultrastructure, innervations, and some observations of metamorphosis. Can J Zool 88(12):1149–1168

    Article  Google Scholar 

  • Temereva EN, Malakhov VV (2004) Ultrastructure of the blood system in Phoronid Phoronopsis harmeri Pixell, 1912: II. Main vessels. Russ J Mar Biol 30(2):101–112

    Article  Google Scholar 

  • Temereva EN, Malakhov VV (2006) The answer to Thomas Bartolomaeus: “Larva of phoronid Phoronopsis harmeri Pixell, 1912 has trimeric coelom organization”. Invert Zool 2(2):394–402

    Google Scholar 

  • Temereva EN, Malakhov VV (2007) Embryogenesis and larval development of phoronid Phoronopsis harmeri Pixell, 1912: dual origin of the coelomic mesoderm. Invert Reprod Dev 50(2):57–66

    Article  Google Scholar 

  • Temereva EN, Malakhov VV (2010) Method of ciliary filter feeding in Phoronopsis harmeri (Phoronida, Lophophorata). Russ J Mar Biol 36(2):109–116

    Article  Google Scholar 

  • Vandermeulen JH (1970) Functional morphology of the digestive tract epithelium in Phoronis vancouverensis Pixell: an ultrastructural and histological study. J Morphol 130:271–286

    Article  PubMed  CAS  Google Scholar 

  • Vandermeulen JH, Reid RG (1969) Digestive tract enzymes in Phoronida. Comput Biochem Phys 28:443–448

    Article  CAS  Google Scholar 

  • Zimmer RL (1978) The comparative structure of the preoral hood coelom in Phoronida and the fate of this cavity during and metamorphosis. In: Chia FS, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, pp 23–40

    Google Scholar 

  • Zimmer RL (1980) Mesoderm proliferation and formation of the protocoel and metacoel in early embryos of Phoronis vancouverensis (Phoronida). Zool Jahrb Anat 103(2):219–233

    Google Scholar 

Download references

Acknowledgments

ENT is grateful to Svetlana Maslakova for hosting her at the Oregon Institute of Marine Biology (Coos Bay) in 2010. We appreciate an anonymous reviewer for his criticisms and improving of manuscript. We are most grateful to Dr. Mikhailov, Dr. Jaffee for the help with manuscript preparation. The project was funded by the Russian Foundation for Basic Research (project 11-04-00690), Russian Ministry of Education and Science and Grant Council of the President of Russia (#4456.2010.4, #02.740.11.0280, #P727, # MD-2892.2011.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Temereva.

Additional information

Communicated by T. Bartolomaeus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temereva, E.N., Malakhov, V.V. Organization of the epistome in Phoronopsis harmeri (Phoronida) and consideration of the coelomic organization in Phoronida. Zoomorphology 130, 121–134 (2011). https://doi.org/10.1007/s00435-011-0126-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-011-0126-z

Keywords

Navigation