Skip to main content
Log in

Cleavage and gastrulation in Pycnogonum litorale (Arthropoda, Pycnogonida): morphological support for the Ecdysozoa?

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The early cleavage and gastrulation of the pycnogonid Pycnogonum litorale is investigated in detail by fluorescence microscopy, confocal laser scanning microscopy, and histology. The cleavage is holoblastic with equally sized blastomeres and an irregular radial pattern. There is no stereotypic cell lineage, and timing and spindle directions of individual mitoses vary to a high degree. Gastrulation begins at the 63-cell stage with the retardation and enlargement of a cell which adopts the form of a bottle and fills the interior of the egg, followed by immigration and epiboly of smaller cells surrounding the large bottle-shaped cell. The gastrulation site marks the dorsal side of the embryo and the stomodaeum forms adjacent to the area of gastrulation. The pattern of the early development of Pycnogonum is compared with that of other Pycnogonida resulting in a putative ground pattern of pycnogonid development. Furthermore, our results are discussed in the wider framework of putative arthropod and cycloneuralian relationships. This comparison implies morphological support for the Ecdysozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493. doi:10.1038/387489a0

    Article  PubMed  CAS  Google Scholar 

  • Alwes F, Scholtz G (2004) Cleavage and gastrulation of the euphausiacean Meganyctiphanes norvegica (Crustacea, Malacostraca). Zoomorphology 123:125–137. doi:10.1007/s00435-004-0095-6

    Article  Google Scholar 

  • Anderson DT (1969) On the embryology of the cirripede crustacean Tetraclita rosea (Krauss), Tetraclita purpurascens (Wood), Chthamalus antennatus (Darwin) and Chamaesipho columna (Spengler) and some considerations of crustacean phylogenetic relationships. Philos Trans R Soc Lond 256:183–235. doi:10.1098/rstb.1969.0041

    Article  Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, Oxford

    Google Scholar 

  • Arango CP, Wheeler WC (2007) Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23:1–39. doi:10.1111/j.1096-0031.2007.00143.x

    Article  Google Scholar 

  • Bamber RN (2007) A holistic re-interpretation of the phylogeny of the Pycnogonida Latreille, 1810 (Arthropoda). Zootaxa 1668:295–312

    Google Scholar 

  • Bamber RN, El Nagar A (2009) Pycnobase: World Pycnogonid Database. Available online at http://www.marinespecies.org/pycnobase/. Accessed 20 February 2009

  • Behrens W (1984) Larvenentwicklung und Metamorphose von Pycnogonum litorale (Chelicerata, Pantopoda). Zoomorphology 104:266–279. doi:10.1007/BF00312008

    Article  Google Scholar 

  • Brenneis G, Ungerer P, Scholtz G (2008) The chelifores of sea spiders (Arthropoda, Pycnogonida) are the appendages of the deutocerebral segment. Evol Dev 10:717–724

    PubMed  Google Scholar 

  • Claypole AM (1898) The embryology and oogenesis of Anurida maritima. J Morphol 14:219–300. doi:10.1002/jmor.1050140205

    Article  Google Scholar 

  • Dearden PK, Donly C, Grbic M (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129:5461–5472. doi:10.1242/dev.00099

    Article  PubMed  CAS  Google Scholar 

  • Dogiel V (1913) Embryologische Studien an Pantopoden. Z Wiss Zool 107:575–741

    Google Scholar 

  • Dohle W (1964) Die Embryonalentwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zool Jb Anat 81:241–310

    Google Scholar 

  • Dohle W (1996) Spiralia. In: Westheide W, Rieger R (eds) Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer Verlag, Stuttgart, pp 205–209

    Google Scholar 

  • Dohrn A (1881) Die Pantopoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Fauna & Flora des Golfes von Neapel und der angrenzenden Meeres-Abschnitte 3:1–252

    Google Scholar 

  • Dunlop JA, Arango CP (2005) Pycnogonid affinities: a review. J Zool Syst Evol Res 43:8–21. doi:10.1111/j.1439-0469.2004.00284.x

    Article  Google Scholar 

  • Dunn CW et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi:10.1038/nature06614

    Article  PubMed  CAS  Google Scholar 

  • Fuchs K (1914) Die Keimbahnentwicklung von Cyclops viridis Jurine. Zool Jb Anat 38:103–156

    Google Scholar 

  • Gabriel WN, McNuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–559. doi:10.1016/j.ydbio.2007.09.055

    Article  PubMed  CAS  Google Scholar 

  • Gerberding M, Browne WE, Patel NH (2002) Cell lineage analysis of the amphipod crustacean Parhyale hawaiensis reveals an early restriction of cell fates. Development 129:5789–5801. doi:10.1242/dev.00155

    Article  PubMed  CAS  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161. doi:10.1038/35093097

    Article  PubMed  CAS  Google Scholar 

  • Hejnol A, Schnabel R (2005) The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development 132:1349–1361. doi:10.1242/dev.01701

    Article  PubMed  CAS  Google Scholar 

  • Hejnol A, Schnabel R (2006) What a couple of dimensions can do for you: comparative developmental studies using 4D microscopy—examples from tardigrade development. Integr Comp Biol 46:151–161. doi:10.1093/icb/icj012

    Article  Google Scholar 

  • Hertzler PL (2005) Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus) vannamei (Malacostraca, Decapoda, Dendrobranchiata). Arthropod Struct Dev 34:455–469

    Google Scholar 

  • Hertzler PL, Clark WHJ (1992) Cleavage and gastrulation in the shrimp Sicyonia ingentis: invagination is accompanied by oriented cell division. Development 116:127–140

    PubMed  CAS  Google Scholar 

  • Heuer CM, Loesel R (2008) Immunofluorescence analysis of the internal brain anatomy of Nereis diversicolor (Polychaeta, Annelida). Cell Tissue Res 331:713–714. doi:10.1007/s00441-007-0535-y

    Article  PubMed  CAS  Google Scholar 

  • Hoek PPC (1881) Report on the Pycnogonida, dredged by HMS Challenger during the years 1873–76. Zool Chall Exp 10:1–167

    Google Scholar 

  • Jenner RA, Scholtz G (2005) Playing another round of metazoan phylogenetics: historical epistemology, sensitivity analysis, and the position of Arthropoda within the Metazoa on the basis of morphology. In: Koenemann S, Jenner R (eds) Crustacea and arthropod relationships. CRC Press, Boca Raton, pp 355–385

    Google Scholar 

  • Jura C (1966) Origin of the endoderm and embryogeneis of the alimentary system in Tetradontophora bielanensis (Waga) (Collembola). Acta Biol Cracow Zool 9:95–102

    Google Scholar 

  • Kozloff EN (2007) Stages of development, from first cleavage to hatching, of an Echinoderes (Phylum Kinorhyncha: Class Cyclorhagida). Cah Biol Mar 48:199–206

    Google Scholar 

  • Kühn A (1913) Die Sonderung der Keimesbezirke in der Entwicklung der Sommereier von Polyphemus pediculus de Geer. Zool Jb Anat 35:243–340

    Google Scholar 

  • Lang K (1953) Die Entwicklung des Eies von Priapulus caudatus Lam. und die systematische Stellung der Priapuliden. Ark Zool 5:321–348

    Google Scholar 

  • Longhorn SJ, Foster PG, Vogler AP (2007) The nematode-arthropod clade revsited: phylogenomic analyses from ribosomal protein genes misled by shared evolutionary biases. Cladistics 23:130–144. doi:10.1111/j.1096-0031.2006.00132.x

    Article  Google Scholar 

  • Malakhov VV, Spiridonov SE (1984) The embryogenesis of Gordius sp. from Turkmenia, with special reference to the position of the Nematomorpha in the animal kingdom. Zool Zh 63:1285–1297 Russian with English summary

    Google Scholar 

  • Mallatt J, Giribet G (2006) Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phyl Evol 40:772–794. doi:10.1016/j.ympev.2006.04.021

    Article  CAS  Google Scholar 

  • Meisenheimer J (1902) Beiträge zur Entwicklungsgeschichte der Pantopoden. I. Die Entwicklung von Ammothea echinata Hodge bis zur Ausbildung der Larvenform. Z Wiss Zool 72:191–248

    Google Scholar 

  • Montgomery T (1904) Development and structure of the larva of Paragordius. Proc Acad Nat Sci Phila 56:738–755

    Google Scholar 

  • Morgan TH (1891) A contribution to the embryology and phylogeny of the pycnogonids. Stud Biol Lab Johns Hopkins Univ 5:1–76

    Google Scholar 

  • Moritz KB, Sauer HW (1996) Boveri’s contributions to developmental biology–a challenge for today. Int J Dev Biol 40:27–47

    PubMed  CAS  Google Scholar 

  • Mühldorf A (1914) Beiträge zur Entwicklungsgeschichte der Gordius Larve. Z Wiss Zool 111:1–75

    Google Scholar 

  • Nachtwey R (1925) Untersuchungen über die Keimbahn, Organogenese und Anatomie von Asplanchna priodonta Gosse. Z Wiss Zool 126:239–492

    Google Scholar 

  • Nakamura K, Kano Y, Suzuki N, Namatame T, Kosaku A (2007) 18S rRNA phylogeny of sea spiders with emphasis on the position of Rhynchothoracidae. Mar Biol 153:213–223

    Article  CAS  Google Scholar 

  • Nielsen C (2001) Animal evolution, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Pilato G, Binda MG, Biondi O, D’Urso V, Lisi O, Marletta A, Maugeri S, Nobile V, Rappazzo G, Sabella G, Sammartano F, Turrisi G, Viglianisi F (2005) The clade Ecdysozoa, perplexities and questions. Zool Anz 244:43–50. doi:10.1016/j.jcz.2005.04.001

    Article  Google Scholar 

  • Podsiadlowski L, Braband A (2006) The complete mitochondrial genome of the sea spider Nymphon gracile (Arthropoda: Pycnogonida). BMC Genomics 7:284. doi:10.1186/1471-2164-7-284

    Article  PubMed  Google Scholar 

  • Richter S, Wirkner C (2004) Kontroversen in der phylogenetischen Systematik der Euarthropoda. Sber Ges Naturf Freunde Berl NF 43:73–102

    Google Scholar 

  • Roeding F, Hagner-Holler S, Ruhberg H, Ebersberger I, von Haeseler A, Kube M, Reinhardt R, Burmester T (2007) EST sequencing of Onychophora and phylogenomic analysis of Metazoa. Mol Phylogenet Evol 45:942–951

    PubMed  CAS  Google Scholar 

  • Sanchez S (1959) Le développement des Pycnogonides et leurs affinités avec les Arachnides. Arch Zool Exp Gen 98:1–102

    Google Scholar 

  • Schierenberg E (2005) Unusual cleavage and gastrulation in a freshwater nematode: developmental and phylogenetic implications. Dev Genes Evol 215:103–108. doi:10.1007/s00427-004-0454-9

    Article  PubMed  Google Scholar 

  • Schierenberg E, Schulze J (2008) Many roads lead to Rome: different ways to construct a nematode. In: Minelli A, Fusco G (eds) Evolving pathways: key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 261–280

    Google Scholar 

  • Schmidt-Rhaesa A, Bartolomaeus T, Lemburg C, Ehlers U, Garey JR (1998) The position of the Arthropoda in the phylogenetic system. J Morphol 238:263–285. doi:10.1002/(SICI)1097-4687(199812)238:3<263::AID-JMOR1>3.0.CO;2-L

    Article  Google Scholar 

  • Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 317–332

    Google Scholar 

  • Scholtz G (2002) The Articulata hypothesis—or what is a segment? Org Divers Evol 2:197–215. doi:10.1078/1439-6092-00046

    Article  Google Scholar 

  • Scholtz G (2003) Is the taxon Articulata obsolete? Arguments in favour of a close relationship between annelids and arthropods. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) Proceedings of the 18th international congress of zoology, Athens 2000. Penfolds, Sofia, pp 489–501

    Google Scholar 

  • Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415. doi:10.1007/s00427-006-0085-4

    Article  PubMed  Google Scholar 

  • Scholtz G, Wolff C (2002) Cleavage, gastrulation, and germ disc formation of the amphipod Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Contrib Zool 71:9–28

    Google Scholar 

  • Sekiguchi K, Nakamura K, Onuma S (1971) Egg-carrying habit and embryonic development in a pycnogonid, Propallene longiceps. Zool Mag 80:137–139 Japanese with English summary

    Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119. doi:10.1016/0012-1606(83)90201-4

    Article  PubMed  CAS  Google Scholar 

  • Teuchert G (1968) Zur Fortpflanzung und Entwicklung der Macrodasyoidea (Gastrotricha). Z Morphol Tiere 63:343–418. doi:10.1007/BF00391930

    Article  Google Scholar 

  • Tiegs OW (1940) The embryology and affinities of the Symphyla, based on a study of Hanseniella agilis. Q J Microsc Sci 82:1–225

    Google Scholar 

  • Tiegs OW (1947) The development and affinities of the Pauropoda based on a study of Pauropus silvaticus. Q J Microsc Sci 88(165–267):275–336

    Google Scholar 

  • Tomaschko K-H, Wilhelm E, Bückmann D (1997) Growth and reproduction of Pycnogonum litorale (Pycnogonida) under laboratory conditions. Mar Biol (Berl) 129:595–600. doi:10.1007/s002270050201

    Article  Google Scholar 

  • Vilpoux K, Waloszek D (2003) Larval development and morphogenesis of the sea spider Pycnogonum litorale (Ström, 1762) and the tagmosis of the body of Pantopoda. Arthropod Struct Dev 32:349–383. doi:10.1016/j.asd.2003.09.004

    Article  PubMed  Google Scholar 

  • Wägele J-W, Misof B (2001) On the quality of evidence in phylogeny reconstruction: a reply to Zrzavý’s defence of the ‚Ecdysozoa’ hypothesis. J Zool Syst Evol Res 39:165–176. doi:10.1046/j.1439-0469.2001.00177.x

    Article  Google Scholar 

  • Wennberg SA, Janssen R, Budd GE (2008) Early embryonic development of the priapulid worm Priapulus caudatus. Evol Dev 10:326–338

    PubMed  Google Scholar 

  • Weygoldt P (1960) Embryologische Untersuchungen an Ostrakoden: die Entwicklung von Cyprideis litoralis (G.S. Brady) (Ostracoda, Podocopa, Cytheridae). Zool Jb Anat 78:369–426

    Google Scholar 

  • Weygoldt P (1979) Gastrulation in the Arthropoda? Fortschr Zool Syst Evolutionsforsch 1:73–81

    Google Scholar 

  • Wolff C, Scholtz G (2002) Cell lineage, axis formation, and the origin of germ layers in the amphipod crustacean Orchestia cavimana. Dev Biol 250:44–58. doi:10.1006/dbio.2002.0789

    Article  PubMed  CAS  Google Scholar 

  • Zrzavý J, Hypša V, Vlášková M (1997) Arthropod phylogeny: taxonomic congruence, total evidence and conditional combination approaches to morphological and molecular data sets. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 97–107

    Google Scholar 

Download references

Acknowledgments

We are grateful to Kathia Fabritius-Vilpoux for her valuable advice concerning the collection and maintenance of Pycnogonum litorale. We thank Georg Brenneis and Claudia Arango for many discussions concerning pycnogonid biology. Franz Krapp helped with some taxonomic advices and Jason Dunlop corrected the English. We would further like to thank Winfried Hochstetter, Arno Otten, Gunda Jochens and colleagues at the Aquarium Wilhelmshaven for supporting us during our field trips. We thank the skipper and the administrative staff at the Terramare Wilhelmshaven for technical support. The study is part of the priority program “Deep Metazoan Phylogeny” of the DFG (Scho 442/9-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Scholtz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungerer, P., Scholtz, G. Cleavage and gastrulation in Pycnogonum litorale (Arthropoda, Pycnogonida): morphological support for the Ecdysozoa?. Zoomorphology 128, 263–274 (2009). https://doi.org/10.1007/s00435-009-0091-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-009-0091-y

Keywords

Navigation