Skip to main content
Log in

Functional morphology of Tethya species (Porifera): 2. Three-dimensional morphometrics on spicules and skeleton superstructures of T. minuta

  • Original Article
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The biomechanics of body contraction in Porifera is almost unknown, although sponge contraction has been observed already in ancient times. Some members of the genus Tethya represent the most contractile poriferan species. All of them show a highly ordered skeleton layout. Based on three main spicule types, functional units are assembled, termed skeleton superstructures here. Using synchrotron radiation based x-ray microtomography and quantitative image analysis with specially developed particle and structure recognition algorithms allowed us to perform spatial allocation and 3D-morphometric characterizations of single spicules and skeleton superstructures in T. minuta. We found and analyzed three skeleton superstructures in the investigated specimen: (1) 85 megasclere bundles, (2) a megaster sphere, composed by 16,646 oxyasters and (3) a pinacoderm–tylaster layer composed by micrasters. All three skeleton superstructures represent composite materials of siliceous spicules and extracellular matrix. From structure recognition we developed an abstracted mathematical model of the bundles and the sphere. In addition, we analyzed the megaster network interrelation topology and found a baso-apical linear symmetry axis for the megaster density inside the sphere. Based on our results, we propose a hypothetical biomechanical contraction model for T. minuta and T. wilhelma, in which the skeleton superstructures restrain physical stress generated by contraction in the tissue. While skeletal structures within the genus Tethya have been explained using R. Buckminster Fullers principle of tensegrity by other authors, we prefer material science based biomechanical approaches, to understand skeletal superstructures by referring to their composite material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abràmoff M (2000–2004) VolumeJ. VolumeJ–volume rendering in Java. http://www.bij.isi.uu.nl/vr.htm 1.71

  • Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278. http://www.sciencemag.org/cgi/content/abstract/309/5732/275

    Google Scholar 

  • Bavestrello G, Calcinai B, Ceccati L, Cerrano C, Sarà M (2000) Skeletal development in two species of Tethya (Porifera, Demospongiae). Ital J Zool 67:241–244

    Article  Google Scholar 

  • Beckmann F, Donath T, Dose T, Lippmann T, Martins RV, Metge J, Schreyer A (2004) Microtomography using synchrotron radiation at DESY: current status and future developments. In: Bonse U (ed.) Developments in X-Ray Tomography IV: SPIE Proceedings 5535, pp 1–10

  • Bond C (1992) Continuous cell movements rearrange anatomical structures in intact sponges. J Exp Zool 263:284–302

    Article  PubMed  CAS  Google Scholar 

  • Bond C, Harris AK (1988) Locomotion of sponges and its physical mechanism. J Exp Zool 246:271–284

    Article  PubMed  CAS  Google Scholar 

  • Boury Esnault N, Rützler K (1997) Thesaurus of sponge morphology. Smithson Contrib Zool 596:1–55

    Google Scholar 

  • Fishelson L (1981) Observations on the moving colonies of the genus Tethya (Demospongia, Porifera). 1. Behaviour and cytology. Zoomorphology 98:89–99

    Article  Google Scholar 

  • Fuller RB (1961) Tensegrity. Portfolio 4:112–127

    Google Scholar 

  • Guth E (1945) Theorie of Filler reinforcement. J Appl Phys 16:20–25

    Article  CAS  Google Scholar 

  • Huesman RH, Gullberg GT, Greenberg WL, Budinger TF (1977) RECLBL Library users manual: Donner algorithms for reconstruction tomography. Lawrence Berkeley Laboratory, University of California

  • Ingber DE (1998) The architecture of life. Sci Am 278:48–57

    Article  PubMed  CAS  Google Scholar 

  • Ingber DE (2003a) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173. http://www.jcs.biologists.org/cgi/content/abstract/116/7/1157

    Google Scholar 

  • Ingber DE (2003b) Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408. http://www.jcs.biologists.org/cgi/content/abstract/116/8/1397

    Google Scholar 

  • Ingber DE, Heidemann SR, Lamoureux P, Buxbaum RE (2000) Opposing views on tensegrity as a structural framework for understanding cell mechanics. J Appl Physiol 89:1663–1678. http://www.jap.physiology.org

    Google Scholar 

  • Koehl MAR (1982) Mechanical design of spicule-reinforced connective tissue: stiffness. J Exp Biol 98:239–268

    Google Scholar 

  • Koehl MAR (1996) When does morphology matter. Annu Rev Ecol Syst 27:501–542

    Article  Google Scholar 

  • Marshall W (1885) Coelenterata, porifera, tetractinellidae; Tafel XLVII. In: Leuckart R (ed.) Zoologische Wandttafeln der wirbellosen Thiere. Th. Fischer, Kassel

  • Minchin E (1900) Sponges. In: Lancester ER (ed) A treatise on zoology. Part II. The porifera and coelentera. Adam & Charles Black, London, pp 1–178

    Google Scholar 

  • Mullins L (1980) Theories of rubber-like elasticity and the behaviour of fille rubber. Symp Soc Exp Biol 34:273–288

    PubMed  CAS  Google Scholar 

  • Nickel M (2001) Cell biology and biotechnology of marine invertebrates—sponges (Porifera) as model organisms. Arb Mitteil Biol Inst Uni Stuttgart 32:1–157

    Google Scholar 

  • Nickel M (2004) Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae). J Exp Biol 207:4515–4524

    Article  PubMed  Google Scholar 

  • Nickel M, Brümmer F (2003) In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1847). J Biotechnol 100:147–159

    Article  PubMed  CAS  Google Scholar 

  • Nickel M, Brümmer F (2004) Body extension types of Tethya wilhelma: cellular organisation and their function in movement. Boll Mus Ist Biol Univ Genova 68:483–489

    Google Scholar 

  • Nickel M, Donath T, Schweikert M, Beckmann F (2006) Functional Morphology of Tethya species (Porifera): 1. Quantitative 3D-analysis of T. wilhelma by synchrotron radiation based x-ray microtomography. Zoomorphology (in press). DOI 10.1007/s00435-006-0021-1

  • Palumbi SR (1986) How body plans limit acclimation responses of a demosponge to wave force. Ecology 67:208–214

    Article  Google Scholar 

  • Rasband WS (1997–2004) ImageJ. National Institutes of Health, Bethesda, Maryland, USA. http://www.rsb.info.nih.gov/ij/ 1.33

  • Redi CA, Garagna S, Zuccotti M, Capanna EHZ (2002) Visual zoology. The Pavia collection of Leuckart’s zoological wall charts (1877). Ibis, Como

  • Sarà M (1994) A rearrangement of the family Tethyidae (Porifera Hadromerida) with establishment of new genera and description of two new species. Zool J Linn Soc 110:355–371

    Article  Google Scholar 

  • Sarà M (1998) A Biogeographic and evolutionary survey of the genus Tethya (Porifera, Demospongiae). In: Watanabe Y, Fusetani N (eds.) Sponge sciences. Multidisciplinary perspectives. Springer, Berlin Heidelberg New York, pp 83–94

    Google Scholar 

  • Sarà M (2002) Family Tethyidae Gray 1848. In: Hooper JNA, Van Soest RMW (eds.) Systema Porifera: a guide to the classification of sponges, vol 1. Kluwer Academic/Plenum Publishers, New York, pp 245–265

  • Sarà M, Manara E (1991) Cortical structure and adaptation in the genus Tethya (Porifera, Demospongiae). In: Reitner J, Keupp H (eds) Fossil and recent sponges. Springer, Berlin Heidelberg New York, pp 306–312

    Google Scholar 

  • Sarà M, Sarà A (2004) A revision of Australian and New Zealand Tethya (Porifera:Demospongiae) with a preliminary analysis of species grouping. Invertebr Syst 18:117–156

    Article  Google Scholar 

  • Sarà M, Gómez P, Sarà A (2001a) East Pacific Mexican Tethya (Porifera: Demospongiae) with descriptions of five new species. Proceedings of the Biological Society of Washington 114:794–821

  • Sarà M, Sarà A, Nickel M, Brümmer F (2001b) Three new species of Tethya (Porifera: Demospongiae) from German aquaria. Stuttgarter Beitr Naturk Ser A 631:1–15

    Google Scholar 

  • Vandenberghe L, Boyd S, Wu S-P (1998) Determinant maximization with linear matrix inequality constraints. SIAM J Matrix Anal Appl 19:499–533

    Article  Google Scholar 

Download references

Acknowledgements

We thank Hannes Kirchhauser (Vivarium, State Museum for Natural History, Karlsruhe) for providing sponge material; Ulrich Grün and Thomas Wallmersperger (both Institute for Statics and Dynamics of Aerospace Structures, Stuttgart University) as well as Jörg Hammel (Biological Institute, Stuttgart University) and Birgit Nickel (Stuttgart) for discussion; Hans-Dieter Görtz and Franz Brümmer (both Biological Institute, Stuttgart University) and Frank Allgöwer (Institute for Systems Theory and Automatic Control, Stuttgart University) for providing infrastructure and support. MN received DESY travel grants based on DESY projects I-04-062 and I-03-059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nickel.

Electronic supplementary material

Supplementary material 1

Supplementary material 2

Supplementary material 3

Supplementary material 4

Supplementary material 5

Supplementary material 6

Supplementary material 7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nickel, M., Bullinger, E. & Beckmann, F. Functional morphology of Tethya species (Porifera): 2. Three-dimensional morphometrics on spicules and skeleton superstructures of T. minuta . Zoomorphology 125, 225–239 (2006). https://doi.org/10.1007/s00435-006-0022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-006-0022-0

Keywords

Navigation