Skip to main content

Advertisement

Log in

RNA N6-methyladenosine modification in regulating cancer stem cells and tumor immune microenvironment and its implication for cancer therapy

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Therapy resistance is a well-known phenomenon in cancer treatment. It can be intrinsic or acquired, accountable for frequent tumor relapse and death worldwide. The interplay between cancer cells and their neighboring environment can activate complex signaling mechanisms influencing epigenetic changes and maintain cancer cell survival leading to the malignant phenotype. Cancer stem cells (CSCs) are tumor-initiating cells (TICs) and constitute the primary source of drug resistance and tumor recurrence. Studies have shown that cancer cells exhibit dysregulated RNA N6-methyladenosine (m6A) "writers," "erasers," and "readers" levels after acquiring drug resistance. The present review provides novel insight into the role of m6A modifiers involved in CSC generation, cancer cell proliferation, and therapy resistance. m6A RNA modifications in the cross-talk between CSC and the tumor immune microenvironment (TIME) have also been highlighted. Further, we have discussed the therapeutic potential of targeting m6A machinery for cancer diagnosis and the development of new therapies for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilo F et al (2015) Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17(6):689–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alves ALV et al (2021) Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 12(1):1–22

    Google Scholar 

  • Anido J et al (2010) TGF-β receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18(6):655–668

    CAS  PubMed  Google Scholar 

  • Bai Y et al (2019) YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma. Front Oncol 9:332

    PubMed  PubMed Central  Google Scholar 

  • Bates RC et al (2005) Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest 115(2):339–347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertero A et al (2018) The SMAD2/3 interactome reveals that TGFβ controls m 6 A mRNA methylation in pluripotency. Nature 555(7695):256–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binnewies M et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boccaletto P et al (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46(D1):D303–D307

    CAS  PubMed  Google Scholar 

  • Chen C et al (2021) m6A modification in non-coding RNA: the role in cancer drug resistance. Front Oncol 11:4202

    Google Scholar 

  • Cheng Y et al (2019) m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep 28(7):1703–1716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Q et al (2017) m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18(11):2622–2634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci 71(10):3971–3975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Z, Cui H (2020) The emerging roles of RNA modifications in glioblastoma. Cancers 12(3):736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drachsler M et al (2016) CD95 maintains stem cell-like and non-classical EMT programs in primary human glioblastoma cells. Cell Death Dis 7(4):e2209–e2209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y et al (2018) SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res 46(10):5195–5208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elcheva IA et al (2020) RNA-binding protein IGF2BP1 maintains leukemia stem cell properties by regulating HOXB4, MYB, and ALDH1A1. Leukemia 34(5):1354–1363

    CAS  PubMed  Google Scholar 

  • Frye M et al (2018) RNA modifications modulate gene expression during development. Science 361(6409):1346–1349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao R et al (2021) m6A modification: a double-edged sword in tumor development. Front Oncol 11:2821

    Google Scholar 

  • Granito A et al (2021) Hepatocellular carcinoma in viral and autoimmune liver diseases: role of CD4+ CD25+ Foxp3+ regulatory T cells in the immune microenvironment. World J Gastroenterol 27(22):2994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu C et al (2020) RNA m6A modification in cancers: molecular mechanisms and potential. The Innovation 1(3):100066

    PubMed  PubMed Central  Google Scholar 

  • Gu Y et al (2021) The evolving landscape of N6-methyladenosine (m6A) modification in the tumor microenvironment. Mol Ther 29(5):1703–1715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L et al (2021) N6-Methyladenosine RNA modification in the tumor immune microenvironment: novel implications for immunotherapy. Front Immunol 12:5351

    Google Scholar 

  • Gutschner T et al (2014) Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma. Hepatology 59(5):1900–1911

    CAS  PubMed  Google Scholar 

  • Han D et al (2019) Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566(7743):270–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X et al (2020) IGF2BP2 regulates DANCR by serving as an N6-methyladenosine reader. Cell Death Differ 27(6):1782–1794

    CAS  PubMed  Google Scholar 

  • Huang Y et al (2015) Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 43(1):373–384

    CAS  PubMed  Google Scholar 

  • Huang H et al (2018) Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20(3):285–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y et al (2019) Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 35(4):677–691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Weng H, Chen J (2020) m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 37(3):270–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huff S et al (2021) m6A-RNA demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem Biol 16(2):324–333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia R et al (2013) The splicing factor hnRNP C regulates expression of co-stimulatory molecules CD80 and CD40 in dendritic cells. Immunol Lett 153(1–2):27–32

    CAS  PubMed  Google Scholar 

  • Jiang X et al (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6(1):1–16

    Google Scholar 

  • Jin DI et al (2012) Expression and roles of Wilms’ tumor 1-associating protein in glioblastoma. Cancer Sci 103(12):2102–2109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H et al (2019a) N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine 47:195–207

    PubMed  PubMed Central  Google Scholar 

  • Jin D et al (2019b) m 6 A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol 12(1):1–22

    CAS  Google Scholar 

  • Jin K-X et al (2021) N6-methyladenosine (m6A) depletion regulates pluripotency exit by activating signaling pathways in embryonic stem cells. Proc Natl Acad Sci 118(51):e2105192118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh D et al (2013) Binding of αvβ1 and αvβ6 integrins to tenascin-C induces epithelial–mesenchymal transition-like change of breast cancer cells. Oncogenesis 2(8):e65–e65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawashima A et al (2003) Expression of αv integrin family in gastric carcinomas: increased αvβ6 is associated with lymph node metastasis. Pathol Res Pract 199(2):57–64

    CAS  PubMed  Google Scholar 

  • Kessler S et al (2015) IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype. Cell Death Dis 6(10):e1894–e1894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Muthusamy S (2020) SETD2 as a regulator of N6-methyladenosine RNA methylation and modifiers in cancer. Eur J Cancer Prev 29(6):556–564

    CAS  PubMed  Google Scholar 

  • Kumari K, Groza P, Aguilo F (2021) Regulatory roles of RNA modifications in breast cancer. NAR Cancer 3(3):zcab036

    PubMed  PubMed Central  Google Scholar 

  • Lei MML, Lee TKW (2021) Cancer stem cells: emerging key players in immune evasion of cancers. Front Cell Dev Biol 9:692940

    PubMed  PubMed Central  Google Scholar 

  • Li Q et al (2017a) A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes. Nat Commun 8(1):1–12

    Google Scholar 

  • Li Z et al (2017b) FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 31(1):127–141

    PubMed  Google Scholar 

  • Li Z et al (2018) Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res 28(9):904–917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li T et al (2019) METTL3 facilitates tumor progression via an m 6 A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer 18(1):1–15

    PubMed  PubMed Central  Google Scholar 

  • Li B et al (2020) Surmounting cancer drug resistance: new insights from the perspective of N6-Methyladenosine RNA modification. Drug Resist Updates 53:100720

    Google Scholar 

  • Li J et al (2020a) N6-Methyladenosine regulates the expression and secretion of TGFβ1 to affect the epithelial-mesenchymal transition of cancer cells. Cells 9(2):296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li E et al (2020b) METTL3 enhances cell adhesion through stabilizing integrin β1 mRNA via an m6A-HuR-dependent mechanism in prostatic carcinoma. Am J Cancer Res 10(3):1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li N et al (2020c) ALKBH5 regulates anti–PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci 117(33):20159–20170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X et al (2019) RNA m 6 A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun 10(1):1–13

    Google Scholar 

  • Liu S, Chen S, Zeng J (2018) TGF-β signaling: a complex role in tumorigenesis. Mol Med Rep 17(1):699–704

    CAS  PubMed  Google Scholar 

  • Liu Q et al (2017) Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Mol Cancer 16(1):1–19

    Google Scholar 

  • Liu Y et al (2019) The N 6-methyladenosine (m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA. Am J Physiol Cell Physiol 317(4):C762–C775

    CAS  PubMed  Google Scholar 

  • Liu S et al (2020) FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13. Exp Cell Res 389(1):111894

    CAS  PubMed  Google Scholar 

  • Liu C et al (2021) Potential roles of N6-methyladenosine (m6A) in immune cells. J Transl Med 19(1):1–13

    Google Scholar 

  • Llovet JM et al (2021) Hepatocellular carcinoma (Primer). Nat Rev: Dis Primers 7(1):7

    Google Scholar 

  • Lu H et al (2016) αvβ6 integrin promotes castrate-resistant prostate cancer through JNK1-mediated activation of androgen receptor. Can Res 76(17):5163–5174

    CAS  Google Scholar 

  • Ma Z, Ji J (2020) N6-methyladenosine (m6A) RNA modification in cancer stem cells. Stem Cells 38(12):1511–1519

    CAS  Google Scholar 

  • Malacrida A et al (2020) 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg Med Chem 28(4):115300

    CAS  PubMed  Google Scholar 

  • Melgar K et al (2019) Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci Transl Med 11(508):eaaw8828

    PubMed  PubMed Central  Google Scholar 

  • Miller KD et al (2016) Cancer treatment and survivorship statistics, 2016. CA A Cancer J Clin 66(4):271–289

    Google Scholar 

  • Müller S et al (2019) IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A-and miRNA-dependent manner. Nucleic Acids Res 47(1):375–390

    PubMed  Google Scholar 

  • Naren D et al (2021) High Wilms’ tumor 1 associating protein expression predicts poor prognosis in acute myeloid leukemia and regulates m 6 A methylation of MYC mRNA. J Cancer Res Clin Oncol 147(1):33–47

    CAS  PubMed  Google Scholar 

  • Nishizawa Y et al (2018) Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget 9(7):7476

    PubMed  Google Scholar 

  • Panneerdoss S et al (2018) Cross-talk among writers, readers, and erasers of m6A regulates cancer growth and progression. Sci Adv 4(10):eaar8263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng F et al (2021) Oncogenic AURKA-enhanced N 6-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res 31(3):345–361

    CAS  PubMed  Google Scholar 

  • Pérez-Ruiz E et al (2020) Cancer immunotherapy resistance based on immune checkpoints inhibitors: targets, biomarkers, and remedies. Drug Resist Updates 53:100718

    Google Scholar 

  • Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Relier S et al (2021) FTO-mediated cytoplasmic m 6 A m demethylation adjusts stem-like properties in colorectal cancer cell. Nat Commun 12(1):1–13

    Google Scholar 

  • Rottman F, Shatkin AJ, Perry RP (1974) Sequences containing methylated nucleotides at the 5′ termini of messenger RNAs: possible implications for processing. Cell 3(3):197–199

    CAS  PubMed  Google Scholar 

  • Roundtree IA et al (2017) Dynamic RNA modifications in gene expression regulation. Cell 169(7):1187–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy P, Saikia B (2016) Cancer and cure: a critical analysis. Indian J Cancer 53(3):441

    CAS  PubMed  Google Scholar 

  • Schoenfeld AJ, Hellmann MD (2020) Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37(4):443–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seguin L et al (2015) Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 25(4):234–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selberg S et al (2019) Discovery of small molecules that activate RNA methylation through cooperative binding to the METTL3–14-WTAP complex active site. Cell Rep 26(13):3762–3771

    CAS  PubMed  Google Scholar 

  • Shen C et al (2020a) m 6 A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer 19(1):1–19

    Google Scholar 

  • Shen C et al (2020b) RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell 27(1):64–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y et al (2019) YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun 10(1):1–14

    Google Scholar 

  • Shriwas O et al (2020) DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m 6 A-demethylation of FOXM1 and NANOG. Apoptosis 25(3):233–246

    CAS  PubMed  Google Scholar 

  • Singh B et al (2016) Important role of FTO in the survival of rare panresistant triple-negative inflammatory breast cancer cells facing a severe metabolic challenge. PLoS ONE 11(7):e0159072

    PubMed  PubMed Central  Google Scholar 

  • Su R et al (2018) R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 172(1–2):90–105

    CAS  PubMed  Google Scholar 

  • Su R et al (2020) Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell 38(1):79–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W et al (2021) The role of RNA methylation in regulating stem cell fate and function-focus on m6A. Stem Cells Int 2021:1–13

    Google Scholar 

  • Taketo K et al (2018) The epitranscriptome m6A writer METTL3 promotes chemo-and radioresistance in pancreatic cancer cells. Int J Oncol 52(2):621–629

    PubMed  Google Scholar 

  • Tang B et al (2020) m 6 A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer 19(1):1–15

    Google Scholar 

  • Tian S et al (2020) Regulation of gene expression associated with the N6-methyladenosine (m6A) enzyme system and its significance in cancer. Front Oncol 10:3123

    Google Scholar 

  • Tong J et al (2018) m6A mRNA methylation sustains Treg suppressive functions. Cell Res 28(2):253–256

    PubMed  PubMed Central  Google Scholar 

  • Tzelepis K et al (2019) Pharmacological inhibition of the RNA m6A writer METTL3 as a novel therapeutic strategy for acute myeloid leukemia. Blood 134:403

    Google Scholar 

  • Uddin MB et al (2019) An N6-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells. Biochem Pharmacol 160:134–145

    CAS  PubMed  Google Scholar 

  • Visvader JE (2011) Cells of origin in cancer. Nature 469(7330):314–322

    CAS  PubMed  Google Scholar 

  • Visvanathan A et al (2018a) Essential role of METTL3-mediated m 6 A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 37(4):522–533

    CAS  PubMed  Google Scholar 

  • Visvanathan A et al (2018b) Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 37(4):522–533

    CAS  PubMed  Google Scholar 

  • Visvanathan A et al (2019) N6-Methyladenosine landscape of glioma stem-like cells: METTL3 is essential for the expression of actively transcribed genes and sustenance of the oncogenic signaling. Genes 10(2):141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vu LP et al (2017) The N 6-methyladenosine (m 6 A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 23(11):1369–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2019a) Integrated analysis of transcriptome-wide m6A methylome of osteosarcoma stem cells enriched by chemotherapy. Epigenomics 11(15):1693–1715

    CAS  PubMed  Google Scholar 

  • Wang H et al (2019b) Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat Commun 10(1):1–12

    Google Scholar 

  • Wanna-Udom S et al (2020) The m6A methyltransferase METTL3 contributes to Transforming Growth Factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB. Biochem Biophys Res Commun 524(1):150–155

    CAS  PubMed  Google Scholar 

  • Wei J et al (2020) METTL3 potentiates resistance to cisplatin through m6A modification of TFAP2C in seminoma. J Cell Mol Med 24(19):11366–11380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei M et al (2021) The complex roles and therapeutic implications of m6A modifications in breast cancer. Front Cell Dev Biol 8:1685

    Google Scholar 

  • Wen J et al (2018) Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell 69(6):1028–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weng H et al (2018) METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell 22(2):191–205

    CAS  PubMed  Google Scholar 

  • Wilson MM et al (2020) Emerging mechanisms by which EMT programs control stemness. Trends Cancer 6(9):775–780

    CAS  PubMed  Google Scholar 

  • Xi Z et al (2016) WTAP expression predicts poor prognosis in malignant glioma patients. J Mol Neurosci 60(2):131–136

    CAS  PubMed  Google Scholar 

  • Xiao L et al (2020) FTO inhibition enhances the antitumor effect of temozolomide by targeting MYC-miR-155/23a cluster-MXI1 feedback circuit in glioma. Can Res 80(18):3945–3958

    CAS  Google Scholar 

  • Xiong J et al (2021) Integrins regulate stemness in solid tumor: an emerging therapeutic target. J Hematol Oncol 14(1):1–18

    Google Scholar 

  • Xu Z et al (2020a) N6-methyladenosine RNA modification in cancer therapeutic resistance: current status and perspectives. Biochem Pharmacol 182:114258

    CAS  PubMed  Google Scholar 

  • Xu Y et al (2020b) Regulation of N6-methyladenosine in the differentiation of cancer stem cells and their fate. Front Cell Dev Biol 8:561703

    PubMed  PubMed Central  Google Scholar 

  • Yang S et al (2019) m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun 10(1):1–14

    Google Scholar 

  • Yankova E et al (2021) Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593(7860):597–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z-Y et al (2008) Integrin ανβ6 acts as a prognostic indicator in gastric carcinoma. Clin Oncol 20(1):61–66

    Google Scholar 

  • Zhang C et al (2016a) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci 113(14):E2047–E2056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C et al (2016b) Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217-and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget 7(40):64527

    PubMed  PubMed Central  Google Scholar 

  • Zhang S et al (2017) m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31(4):591–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2019) m6A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol Cancer 18(1):1–16

    Google Scholar 

  • Zhang Y et al (2020a) m6A modification in RNA: biogenesis, functions and roles in gliomas. J Exp Clin Cancer Res 39(1):1–16

    Google Scholar 

  • Zhang C et al (2020b) YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene 39(23):4507–4518

    CAS  PubMed  Google Scholar 

  • Zhang N et al (2021) Function of N6-methyladenosine modification in tumors. J Oncol 2021:1–10

    Google Scholar 

  • Zhang Z et al (2021) RNA N6-methyladenosine modification in the lethal teamwork of cancer stem cells and the tumor immune microenvironment: current landscape and therapeutic potential. Clin Transl Med 11(9):e525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao BS, He C (2015) Fate by RNA methylation: m 6 A steers stem cell pluripotency. Genome Biol 16(1):1–3

    Google Scholar 

  • Zheng G et al (2014) Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem Neurosci 5(8):658–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong L et al (2019) YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett 442:252–261

    CAS  PubMed  Google Scholar 

  • Zhou S et al (2018) FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol Carcinog 57(5):590–597

    CAS  PubMed  Google Scholar 

  • Zhu P et al (2021) A novel hypoxic long noncoding RNA KB-1980E6. 3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene 40(9):1609–1627

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SuK is thankful to Ministry of Education (MoE) and NIT Rourkela for providing fellowship.

Funding

There is no funding sources.

Author information

Authors and Affiliations

Authors

Contributions

Collection of literatures and preparation of images is done by SuK. Review of literatures and drafting of manuscript is done by all authors.

Corresponding author

Correspondence to Srinivasan Muthuswamy.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Kumar, S. & Muthuswamy, S. RNA N6-methyladenosine modification in regulating cancer stem cells and tumor immune microenvironment and its implication for cancer therapy. J Cancer Res Clin Oncol 149, 1621–1633 (2023). https://doi.org/10.1007/s00432-022-04158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-022-04158-z

Keywords

Navigation