Skip to main content
Log in

Genomic landscape of colorectal carcinogenesis

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The molecular pathogenesis of solid tumour was first assessed in colorectal cancer (CRC). To date, ≤ 100 genes with somatic alterations have been found to inter-connectively promote neoplastic transformation through specific pathways. The process of colorectal carcinogenesis via genome landscape is reviewed on the basis of an adenoma-to-carcinoma sequence, as shown by serial histological and epidemiological observations.

Methods

The relevant literatures from PubMed (1980–2021) have been reviewed for this article.

Results

The major routes of CRC development, chromosomal instability (CIN), microsatellite instability (MSI), and the serrated route either via CIN or MSI, proceed through the respective molecular pathway of colorectal carcinogenesis. Particular aspects of CRC carcinogenesis can also be determined by evaluating familial CRCs (FCRC) and genotype–phenotype correlations. Specific causative gene alterations still leave to be identified in several FCRCs. Otherwise, recently verified FCRC can be particularly notable, for example, EPCAM-associated Lynch syndrome, polymerase proofreading-associated polyposis, RNF43-associated polyposis syndrome or NTHL1 tumour syndrome, and hereditary mixed polyposis syndrome. The oncogenic landscape is described, including representative pathway genes, the three routes of carcinogenesis, familial CRCs, genotype–phenotype correlations, the identification of causative genes, and consensus molecular subtypes (CMS).

Conclusion

Whole genome research using multi-gene panels (MGPs) has facilitated high through-put detection of previously unidentified genes involved in colorectal carcinogenesis. New approaches designed to identify rare variants are recommended to consider their alterations implicated in the molecular pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Advani SM, Advani P, DeSantis SM, Brown D, VonVille HM, Lam M et al (2018) Clinical, pathological, and molecular characteristics of CpG island methylator phenotype in colorectal cancer: a systematic review and meta-analysis. Transl Oncol 11(5):1188–1201

    PubMed  PubMed Central  Google Scholar 

  • Ahadova A, Gallon R, Gebert J, Ballhausen A, Endris V, Kirchner M et al (2018) Three molecular pathways model colorectal carcinogenesis in Lynch syndrome. Int J Cancer 143(1):139–150

    CAS  PubMed  Google Scholar 

  • Angius A, Scanu AM, Arru C, Muroni MR, Rallo V, Deiana G et al (2021) Portrait of cancer stem cells on colorectal cancer: molecular biomarkers, signaling pathways and miRNAome. Int J Mol Sci 22(4):1603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Archambault AN, Su YR, Jeon J, Thomas M, Lin Y, Conti DV et al (2020) Cumulative burden of colorectal cancer-associated genetic variants is more strongly associated with early-onset vs late-onset cancer. Gastroenterology 158(5):1274–1286

    CAS  PubMed  Google Scholar 

  • Babaei-Jadidi R, Li N, Saadeddin A, Spencer-Dene B, Jandke A, Muhammad B et al (2011) FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for Degradation. J Exp Med 208(2):295–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bien SA, Su YR, Conti DV, Harrison TA, Qu C, Guo X et al (2019) Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer. Hum Genet 138(4):307–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bodmer W, Bonilla C (2008) Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40(6):695–701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bodmer WF, Bailey CJ, Bodmer J, Bussey HJ, Ellis A, Gorman P et al (1987) Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328(6131):614–616

    CAS  PubMed  Google Scholar 

  • Bosman FT (1999) The hamartoma-adenoma-carcinoma sequence. J Pathol 188(1):1–2

    CAS  PubMed  Google Scholar 

  • Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8:945–954

    CAS  PubMed  Google Scholar 

  • Burt RW, Leppert MF, Slattery ML, Samowitz WS, Spirio LN, Kerber RA et al (2004) Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology 127(2):444–451

    PubMed  Google Scholar 

  • Cheok CF, Lane DP (2017) Exploiting the p53 pathway for therapy. Cold Spring Harb Perspect Med 7(3):ra026310

    Google Scholar 

  • Chow E, Macrae F (2005) A review of juvenile polyposis syndrome. J Gastroenterol Hepatol 20(11):1634–1640

    CAS  PubMed  Google Scholar 

  • Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ, Grimes JM et al (2013) DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer. Hum Mol Genet 22(14):2820–2828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crouch DJM, Bodmer WF (2020) Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proc Natl Acad Sci USA 117(32):18924–18933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    CAS  PubMed  Google Scholar 

  • Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C et al (2015) Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med 21(1):62–70

    CAS  PubMed  Google Scholar 

  • Deitrick J, Pruitt WM (2016) Wnt/β catenin-mediated signaling commonly altered in colorectal Cancer. Prog Mol Biol Transl Sci 144:49–68

    CAS  PubMed  Google Scholar 

  • Dunne PD, McArt DG, Bradley CA, O’Reilly PG, Barrett HL, Cummins R et al (2016) Challenging the cancer molecular stratification dogma: intratumoral heterogeneity undermines consensus molecular subtypes and potential diagnostic value in colorectal cancer. Clin Cancer Res 22(16):4095–4104

    CAS  PubMed  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone modification maps. Nature Rev Genet 8(4):286–298

    CAS  PubMed  Google Scholar 

  • Farooqi AA, de la Roche M, Djamgoz MBA, Siddik ZH (2019) Overview of the oncogenic signaling pathways in colorectal cancer: mechanistic insights. Semin Cancer Biol 58:65–79

    CAS  PubMed  Google Scholar 

  • Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum Mol Genet 10(7):721–733

    CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    CAS  PubMed  Google Scholar 

  • Gadish T, Tulchinsky H, Deutsch AA, Rabau M (2005) Pinealoblastoma in a patient with familial adenomatous polyposis: variant of Turcot syndrome type 2? Report of a case and review of the literature. Dis Colon Rectum 48(12):2343–2346

    CAS  PubMed  Google Scholar 

  • Goel A, Arnold CN, Niedzwiecki D, Carethers JM, Dowell JM, Wasserman L et al (2004) Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res 64(9):3014–3021

    CAS  PubMed  Google Scholar 

  • Grady WM, Carethers JM (2008) Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135(4):1079–1099

    CAS  PubMed  Google Scholar 

  • Groves C, Lamlum H, Crabtree M, Williamson J, Taylor C, Bass S et al (2002) Mutation cluster region, association between germline and somatic mutations and genotype-phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathol 160(6):2055–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillén-Ponce C, Castillejo A, Barberá VM, Pascual-Ramírez JC, Andrada E, Castillejo MI et al (2010) Biallelic MYH germline mutations as cause of Muir–Torre syndrome. Fam Cancer 9(2):151–154

    PubMed  Google Scholar 

  • Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicke A, Soneson C et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Provenzale D, Llor X, Halverson AL, Grady W, Chung DC et al (2019a) NCCN guidelines insights: genetic/familial high-risk assessment: colorectal, ver 2. 2019. J Natl Compr Canc Netw 17(9):1032–1041

    PubMed  Google Scholar 

  • Hague A, Hicks DJ, Hasan F, Smartt H, Cohen GM, Paraskeva C, MacFarlane M (2005) Increased sensitivity to TRAIL-induced apoptosis occurs during the adenoma to carcinoma transition of colorectal carcinogenesis. Br J Cancer 92(4):736–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall MJ, Forman AD, Pilarski R, Wiesner G, Giri VN (2014) Gene panel testing for inherited cancer risk. J Natl Compr Canc Netw 12(9):1339–1346

    PubMed  Google Scholar 

  • Ham-Karim HA, Ebili HO, Bradshaw K, Richman SD, Fadhil W, Domingo E et al (2019b) Targeted next generation sequencing reveals a common genetic pathway for colorectal cancers with chromosomal instability and those with microsatellite and chromosome stability. Pathol Res Pract 215(7):152445

    CAS  PubMed  Google Scholar 

  • Han T, Schatoff EM, Murphy C, Zafra MP, Wilkinson JE, Elemento O et al (2017) R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine. Nat Commun 8:15945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen MF, Johansen J, Sylvander AE, Bjørnevoll I, Talseth-Palmer BA, Lavik LAS et al (2017) Use of multigene-panel identifies pathogenic variants in several CRC-predisposing genes in patients previously tested for Lynch syndrome. Clin Genet 92(4):405–414

    CAS  PubMed  Google Scholar 

  • Hendricks LAJ, Hoogerbrugge N, Schuurs-Hoeijmakers JHM, Vos JR (2021) A review on age-related cancer risks in PTEN hamartoma tumor syndrome. Clin Genet 99(2):219–225

    CAS  PubMed  Google Scholar 

  • Ijichi H, Ikenoue T, Kato N, Mitsuno Y, Togo G, Kato J et al (2001) Systematic analysis of the TGF-beta-Smad signaling pathway in gastrointestinal cancer cells. Biochem Biophys Res Commun 289(2):350–357

    CAS  PubMed  Google Scholar 

  • Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H (2009) LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 89(3):777–798

    CAS  PubMed  Google Scholar 

  • Jess P, Hansen IO, Gamborg M, Jess T (2013) A nationwide Danish cohort study challenging the categorisation into right-sided and left sided colon cancer. BMJ Open 3(5):e002608

    PubMed  PubMed Central  Google Scholar 

  • Jin L, Vu T, Yuan G, Datta PK (2017) STRAP Promotes stemness of human Colorectal cancer via epigenetic regulation of the NOTCH pathway. Cancer Res 77(20):5464–5478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanth P, Grimmett J, Champine M, Burt R, Samadder NJ (2017) Hereditary colorectal polyposis and cancer syndromes: a primer on diagnosis and management. Am J Gastroenterol 112(10):1509–1525

    PubMed  Google Scholar 

  • Kempers MJ, Kuiper RP, Ockeloen CW, Chappuis PO, Hutter P, Rahner N et al (2011) Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol 12(1):49–55

    PubMed  Google Scholar 

  • Kim JC, Cho YK, Roh SA, Yu CS, Gong G, Jang SJ et al (2008) Individual tumorigenesis pathways of sporadic colorectal adenocarcinomas are associated with the biological behavior of tumors. Cancer Sci 99(7):1348–1354

    CAS  PubMed  Google Scholar 

  • Kim MS, Kim SS, Ahn CH, Yoo NJ, Lee SH (2009) Frameshift mutations of Wnt pathway genes AXIN2 and TCF7L2 in gastric carcinomas with high microsatellite instability. Hum Pathol 40(1):58–64

    CAS  PubMed  Google Scholar 

  • Kim JC, Kim JH, Ha YJ, Kim CW, Tak KH, Yoon YS et al (2021) Analysis of genomic pathogenesis according to the revised Bethesda guidelines and additional criteria. J Cancer Res Clin Oncol 147(1):117–128

    CAS  PubMed  Google Scholar 

  • Kinzler KW, Vogelstein B (1998) Landscaping the cancer terrain. Science 280:1036–1037

    CAS  PubMed  Google Scholar 

  • Komor MA, Bosch LJ, Bounova G, Bolijn AS, Delis-van Diemen PM, Rausch C et al (2018) Consensus molecular subtype classification of colorectal adenomas. J Pathol 246(3):266–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korsse SE, Biermann K, Offerhaus GJ, Wagner A, Dekker E, Mathus-Vliegen EM et al (2013) Identification of molecular alterations in gastrointestinal carcinomas and dysplastic hamartomas in Peutz–Jeghers syndrome. Carcinogenesis 34(7):1611–1619

    CAS  PubMed  Google Scholar 

  • Kozma L, Kiss I, Szakáll S, Ember I (1994) Investigation of c-myc oncogene amplification in colorectal cancer. Cancer Lett 81(2):165–169

    CAS  PubMed  Google Scholar 

  • Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15–16

    CAS  PubMed  Google Scholar 

  • Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F et al (2018) Comparative molecular analysis of gastrointestinal adenocarcinomas. Cell 33(4):721–735

    CAS  Google Scholar 

  • Loree JM, Pereira AAL, Lam M, Willauer AN, Raghav K, Dasari A et al (2018) Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and consensus molecular subtypes. Clin Cancer Res 24(5):1062–1072

    CAS  PubMed  Google Scholar 

  • Luebeck EG, Moolgavkar SH (2002) Multistage carcinogenesis and the incidence of colorectal cancer. PNAS 99(23):15095–15100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C et al (2020) A compendium of mutational cancer driver genes. Nat Rev Cancer 20(10):555–572

    PubMed  Google Scholar 

  • Maurer G, Tarkowski B, Baccarini M (2011) Raf kinases in cancer-roles and therapeutic opportunities. Oncogene 30(32):3477–3488

    CAS  PubMed  Google Scholar 

  • Mizutani S, Yamada T, Yachida S (2020) Significance of the gut microbiome in multistep colorectal carcinogenesis. Cancer Sci 111(3):766–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller MF, Ibrahim AE, Arends MJ (2016) Molecular pathological classification of colorectal cancer. Virchows Arch 469(2):125–134

    PubMed  PubMed Central  Google Scholar 

  • Nejadtaghi M, Jafari H, Farrokhi E, Samani KG (2017) Familial colorectal cancer type X (FCCTX) and the correlation with various genes-a systematic review. Curr Probl Cancer 41(6):388–937

    PubMed  Google Scholar 

  • Neuzillet C, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E (2014) MEK in cancer and cancer therapy. Pharmacol Ther 141(2):160–171

    CAS  PubMed  Google Scholar 

  • Nguyen LH, Goel A, Chung DC (2020) Pathways of colorectal carcinogenesis. Gastroenterology 158(2):291–302

    CAS  PubMed  Google Scholar 

  • Niyaz M, Khan MS, Mudassar S (2019) Hedgehog signaling: an Achilles’ heel in cancer. Transl Oncol 12(10):1334–1344

    PubMed  PubMed Central  Google Scholar 

  • Nizialek EA, Mester JL, Dhiman VK, Smiraglia DJ, Eng C (2015) KLLN epigenotype-phenotype associations in Cowden syndrome. Eur J Hum Genet 23(11):1538–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pai R, Tarnawski AS, Tran T (2004) Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell 15(5):2156–2163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palles C, Martin L, Domingo E, Chegwidden L, McGuire J, Cuthill V et al (2021) The clinical features of polymerase proof-reading associated polyposis (PPAP) and recommendations for patient management. Fam Cancer. https://doi.org/10.1007/s10689-021-00256-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller K et al (2017) Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol 3(4):464–471

    PubMed  PubMed Central  Google Scholar 

  • Peltomäki P, Olkinuora A, Nieminen TT (2020) Expert Updates in the field of hereditary nonpolyposis colorectal cancer. Rev Gastroenterol Hepatol 14(8):707–720

    Google Scholar 

  • Pinheiro M, Pinto C, Peixoto A, Veiga I, Lopes P, Henrique R et al (2015) Target gene mutational pattern in Lynch syndrome colorectal carcinomas according to tumour location and germline mutation. Br J Cancer 113(4):686–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pino MS, Chung DC (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138(6):2059–2072

    CAS  PubMed  Google Scholar 

  • Purcell RV, Visnovska M, Biggs PJ, Schmeier S, Frizelle FA (2017) Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci Rep 7(1):11590

    PubMed  PubMed Central  Google Scholar 

  • Qiao L, Wong BC (2009) Role of Notch signaling in colorectal cancer. Carcinogenesis 30(12):1979–1986

    CAS  PubMed  Google Scholar 

  • Quintana I, Mejías-Luque R, Terradas M, Navarro M, Piñol V, Mur P et al (2018) Evidence suggests that germline RNF43 mutations are a rare cause of serrated polyposis. Gut 67(12):2230–2232

    CAS  PubMed  Google Scholar 

  • Samuels Y, Ericson K (2006) Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18(1):77–82

    CAS  PubMed  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670):554

    CAS  PubMed  Google Scholar 

  • Sereno M, Merino M, López-Gómez M, Gómez-Raposo C, Zambrana Tébar F, Moreno Rubio J et al (2014) MUTYH polyposis syndrome: clinical findings, genetics issues and management. Clin Transl Oncol 16(8):675–679

    CAS  PubMed  Google Scholar 

  • Shuen AY, Lanni S, Panigrahi GB, Edwards M, Yu L, Campbell BB et al (2019) Functional repair assay for the diagnosis of constitutional mismatch repair deficiency from non-neoplastic tissue. J Clin Oncol 37(6):461–470

    CAS  PubMed  Google Scholar 

  • Soldevilla B, Carretero-Puche C, Gomez-Lopez G, Al-Shahrour F, Riesco MC, Gil-Calderon B et al (2019) The correlation between immune subtypes and consensus molecular subtypes in colorectal cancer identifies novel tumour microenvironment profiles, with prognostic and therapeutic implications. Eur J Cancer 123:118–129

    CAS  PubMed  Google Scholar 

  • Sonoshita M, Itatani Y, Kakizaki F, Sakimura K, Terashima T, Katsuyama Y et al (2015) Promotion of colorectal cancer invasion and metastasis through activation of NOTCH-DAB1-ABL-RHOGEF protein TRIO. Cancer Discov 5(2):198–211

    CAS  PubMed  Google Scholar 

  • Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J et al (2015) A Big Bang model of human colorectal tumor growth. Nat Genet 47(3):209–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spano JP, Milano G, Rixe C, Fagard R (2006) JAK/STAT signalling pathway in colorectal cancer: a new biological target with therapeutic implications. Eur J Cancer 42(16):2668–2670

    CAS  PubMed  Google Scholar 

  • Stanich PP, Pearlman R (2019) Hereditary or not? understanding serrated polyposis syndrome. Curr Treat Options Gastroenterol 17(4):692–701

    PubMed  Google Scholar 

  • Stoffel EM, Boland CR (2015) Genetics and genetic testing in hereditary colorectal cancer. Gastroenterology 149(5):1191–1203

    PubMed  Google Scholar 

  • Tacheci I, Kopacova M, Bures J (2021) Peutz–Jeghers syndrome. Curr Opin Gastroenterol 37(3):245–254

    CAS  PubMed  Google Scholar 

  • Tanskanen T, van den Berg L, Välimäki N, Aavikko M, Ness-Jensen E, Hveem K et al (2018) Genome-wide association study and meta-analysis in Northern European populations replicate multiple colorectal cancer risk loci. Int J Cancer 142(3):540–546

    CAS  PubMed  Google Scholar 

  • Ten Hoorn S, de Back TR, Sommeijer DW, Vermeulen L (2021) Clinical value of consensus molecular subtypes in colorectal cancer: a systematic review and meta-analysis. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djab106

    Article  PubMed Central  Google Scholar 

  • Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6(12):909–923

    CAS  PubMed  Google Scholar 

  • Tsukiyama T, Zou J, Kim J, Ogamino S, Shino Y, Masuda T et al (2020) A phospho-switch controls RNF43-mediated degradation of Wnt receptors to suppress tumorigenesis. Nat Commun 11(1):4586

    PubMed  PubMed Central  Google Scholar 

  • Tutlewska K, Lubinski J, Kurzawski G (2013) Germline deletions in the EPCAM gene as a cause of Lynch syndrome—literature review. Hered Cancer Clin Pract 11(1):9

    PubMed  PubMed Central  Google Scholar 

  • van Geelen CM, de Vries EG, de Jong S (2004) Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist Update 7(6):345–358

    Google Scholar 

  • van Neerven SM, de Groot NE, Nijman LE, Scicluna BP, van Driel MS, Lecca MC et al (2021) Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature 594(7863):436–441

    PubMed  Google Scholar 

  • Wells K, Wise PE (2017) Hereditary colorectal cancer syndromes. Surg Clin N Am 97(3):605–625

    PubMed  Google Scholar 

  • Weren RD, Ligtenberg MJ, Kets CM, de Voer RM, Verwiel ET, Spruijt L et al (2015) A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat Genet 47(6):668–671

    CAS  PubMed  Google Scholar 

  • Willauer AN, Liu Y, Pereira AAL, Lam M, Morris JS, Raghav KPS et al (2019) Clinical and molecular characterization of early-onset colorectal cancer. Cancer 125(12):2002–2010

    CAS  PubMed  Google Scholar 

  • Woodford-Richens K, Bevan S, Churchman M, Dowling B, Jones D, Norbury CG et al (2000a) Analysis of genetic and phenotypic heterogeneity in juvenile polyposis. Gut 46(5):656–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodford-Richens K, Williamson J, Bevan S, Young J, Leggett B, Frayling I et al (2000b) Allelic loss at SMAD4 in polyps from juvenile polyposis patients and use of fluorescence in situ hybridization to demonstrate clonal origin of the epithelium. Cancer Res 60(9):2477–2482

    CAS  PubMed  Google Scholar 

  • Xu X, Su J, Li R, Wang Y, Zeng D, Wu B (2016) Aberrant expression of Sonic hedgehog signaling in Peutz–Jeghers syndrome. Hum Pathol 50:153–161

    CAS  PubMed  Google Scholar 

  • Yurgelun MB, Allen B, Kaldate RR, Bowles KR, Judkins T, Kaushik P et al (2015a) Identification of a variety of mutations in cancer predisposition genes in patients with suspected Lynch syndrome. Gastroenterology 149(3):604–613

    CAS  PubMed  Google Scholar 

  • Yurgelun MB, Masciari S, Joshi VA, Mercado RC, Lindor NM, Gallinger S et al (2015b) Germline TP53 mutations in patients with early-onset colorectal cancer in the colon cancer family registry. JAMA Oncol 1(2):214–221

    PubMed  Google Scholar 

  • Zhou XP, Woodford-Richens K, Lehtonen R, Kurose K, Aldred M, Hampel H et al (2001) Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan–Riley–Ruvalcaba syndromes. Am J Hum Genet 69(4):704–711

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: JCK; manuscript writing: JCK and WFB; final approval of manuscript: JCK and WFB. Accountable for all aspects of the work: JCK and WFB.

Corresponding authors

Correspondence to Jin Cheon Kim or Walter F. Bodmer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.C., Bodmer, W.F. Genomic landscape of colorectal carcinogenesis. J Cancer Res Clin Oncol 148, 533–545 (2022). https://doi.org/10.1007/s00432-021-03888-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-021-03888-w

Keywords

Navigation