Skip to main content

Advertisement

Log in

Identification of genes highly downregulated in pancreatic cancer through a meta-analysis of microarray datasets: implications for discovery of novel tumor-suppressor genes and therapeutic targets

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC), which has a 5-year survival rate of about 7%. Recent failures of targeted therapies inhibiting kinase activity in clinical trials have highlighted the need for new approaches towards combating this deadly disease.

Methods

In this study, we have identified genes that are significantly downregulated in PC, through a meta-analysis of large number of microarray datasets. We have used qRT-PCR to confirm the downregulation of selected genes in a panel of PC cell lines.

Results

This study has yielded several novel candidate tumor-suppressor genes (TSGs) including GNMT, CEL, PLA2G1B and SERPINI2. We highlight the role of GNMT, a methyl transferase associated with the methylation potential of the cell, and CEL, a lipase, as potential therapeutic targets. We have uncovered genetic links to risk factors associated with PC such as smoking and obesity. Genes important for patient survival and prognosis are also discussed, and we confirm the dysregulation of metabolic pathways previously observed in PC.

Conclusions

While many of the genes downregulated in our dataset are associated with protein products normally produced by the pancreas for excretion, we have uncovered some genes whose downregulation appear to play a more causal role in PC. These genes will assist in providing a better understanding of the disease etiology of PC, and in the search for new therapeutic targets and biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbenhardt C, Poole EM, Kulmacz RJ et al (2013) Phospholipase A2G1B polymorphisms and risk of colorectal neoplasia. Int J Mol Epidemiol Genet 4:140–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apte MV, Wilson JS, Lugea A et al (2013) A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 144:1210–1219

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey P, Chang DK, Nones K et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531:47–52

    Article  CAS  PubMed  Google Scholar 

  • Bhasin MK, Ndebele K, Bucur O et al (2016) Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier. Oncotarget 7:23263–23281

    Article  PubMed  PubMed Central  Google Scholar 

  • Blumenthal RD, Leon E, Hansen HJ et al (2007) Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers. BMC Cancer 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Bochkis IM, Rubins NE, White P et al (2008) Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nat Med 14:828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitling R, Armengaud P, Amtmann A et al (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92

    Article  CAS  PubMed  Google Scholar 

  • Chari ST (2007) Detecting early pancreatic cancer: problems and prospects. Semin Oncol 34:284–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiaradonna F, Gaglio D, Vanoni M et al (2006) Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts. Biochim Biophys Acta 1757:1338–1356

    Article  CAS  PubMed  Google Scholar 

  • Collisson EA, Sadanandam A, Olson P et al (2011) Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 17:500–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook WD, McCaw BJ (2000) Accommodating haploinsufficient tumor suppressor genes in Knudson’s model. Oncogene 19:3434–3438

    Article  CAS  PubMed  Google Scholar 

  • Dal Molin M, Zhang M, de Wilde RF et al (2015) Very long-term survival following resection for pancreatic cancer is not explained by commonly mutated genes: results of whole-exome sequencing analysis. Clin Cancer Res 21:1944–1950

    Article  CAS  PubMed  Google Scholar 

  • Davidson SM, Jonas O, Keibler MA et al (2017) Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat Med 23:235–241

    Article  CAS  PubMed  Google Scholar 

  • Delitto D, Delitto AE, DiVita BB et al (2017) Human pancreatic cancer cells induce a MyD88-dependent stromal response to promote a tumor-tolerant immune microenvironment. Cancer Res 77:672–683

    Article  CAS  PubMed  Google Scholar 

  • Dudley JT, Tibshirani R, Deshpande T et al (2009) Disease signatures are robust across tissues and experiments. Mol Syst Biol 5:307

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabregat A, Sidiropoulos K, Garapati P et al (2016) The reactome pathway knowledgebase. Nucleic Acids Res 44:D481–D487

    Article  CAS  PubMed  Google Scholar 

  • Fajans SS, Bell GI, Polonsky KS (2001) Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345:971–980

    Article  CAS  PubMed  Google Scholar 

  • Fleming JB, Gonzalez RJ, Petzel MQ et al (2009) Influence of obesity on cancer-related outcomes after pancreatectomy to treat pancreatic adenocarcinoma. Arch Surg 144:216–221

    Article  PubMed  Google Scholar 

  • Fukushige S, Horii A (2014) Road to early detection of pancreatic cancer: attempts to utilize epigenetic biomarkers. Cancer Lett 342:231–237

    Article  CAS  PubMed  Google Scholar 

  • Goonesekere NC, Wang X, Ludwig L et al (2014) A meta analysis of pancreatic microarray datasets yields new targets as cancer genes and biomarkers. PLoS One 9:e93046

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris NL, Vennin C, Conway JR et al (2017) SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene 36:4288–4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heit C, Jackson BC, McAndrews M et al (2013) Update of the human and mouse SERPIN gene superfamily. Hum Genom 7:22

    Article  Google Scholar 

  • Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605–1617

    Article  CAS  PubMed  Google Scholar 

  • Higgins WJ, Grehan GT, Wynne KJ et al (2017) SerpinI2 (pancpin) is an inhibitory serpin targeting pancreatic elastase and chymotrypsin. Biochim Biophys Acta 1865:195–200

    Article  CAS  PubMed  Google Scholar 

  • Hirschey MD, DeBerardinis RJ, Diehl AM et al (2015) Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol 35 Suppl:S129–S150

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong F, Breitling R (2008) A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics 24:374–382

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Breitling R, McEntee CW et al (2006) RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22:2825–2827

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA, Warren D, Spencer F et al (2005) Multiple-laboratory comparison of microarray platforms. Nat Method 2:345–350

    Article  CAS  Google Scholar 

  • Iyer NV, Kotch LE, Agani F et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain R, Fischer S, Serra S et al (2010) The use of Cytokeratin 19 (CK19) immunohistochemistry in lesions of the pancreas, gastrointestinal tract, and liver. Appl Immunohistochem Mol Morphol 18:9–15

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Hu H, Tong X et al (2012) Calcium-binding protein S100P and cancer: mechanisms and clinical relevance. J Cancer Res Clin Oncol 138:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kant R, Yen CH, Lu CK et al (2016) Identification of 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranoside as a Glycine N-Methyltransferase enhancer by high-throughput screening of natural products inhibits hepatocellular carcinoma. Int J Mol Sci 17:669

    Article  PubMed Central  Google Scholar 

  • Kimmelman AC (2015) Metabolic dependencies in RAS-driven cancers. Clin Cancer Res 21:1828–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleeff J, Michl P (2017) Targeted therapy of pancreatic cancer: biomarkers are needed. Lancet Oncol 421–422

  • Laing E, Smith CP (2010) RankProdIt: a web-interactive rank products analysis tool. BMC Res Notes 3:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

    Article  CAS  PubMed  Google Scholar 

  • Li CH, Yen CH, Chen YF et al (2017) Characterization of the GNMT-HectH9-PREX2 tripartite relationship in the pathogenesis of hepatocellular carcinoma. Int J Cancer 140:2284–2297

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ni R, Zhang H et al (2016) Identification of feature genes for smoking-related lung adenocarcinoma based on gene expression profile data. Onco Target Ther 9:7397–7407

    Article  Google Scholar 

  • Loftus SK, Cannons JL, Incao A et al (2005) Acinar cell apoptosis in Serpini2-deficient mice models pancreatic insufficiency. PLoS Genet 1:e38

    Article  PubMed  PubMed Central  Google Scholar 

  • Luka Z, Mudd SH, Wagner C (2009) Glycine N-methyltransferase and regulation of S-adenosylmethionine levels. J Biol Chem 284:22507–22511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makohon-Moore A, Iacobuzio-Donahue CA (2016) Pancreatic cancer biology and genetics from an evolutionary perspective. Nat Rev Cancer 16:553–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malvezzi M, Carioli G, Bertuccio P et al (2016) European cancer mortality predictions for the year 2016 with focus on leukaemias. Ann Oncol 27:725–731

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Chantar ML, Vázquez-Chantada M, Ariz U et al (2008) Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47:1191–1199

    Article  PubMed  Google Scholar 

  • Melo SA, Luecke LB, Kahlert C et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi H, Muruganujan A, Casagrande JT et al (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566

    Article  PubMed  Google Scholar 

  • Middleton G, Palmer DH, Greenhalf W et al (2017) Vandetanib plus gemcitabine versus placebo plus gemcitabine in locally advanced or metastatic pancreatic carcinoma (ViP): a prospective, randomised, double-blind, multicentre phase 2 trial. Lancet Oncol 18:486–499

    Article  CAS  PubMed  Google Scholar 

  • Moffitt RA, Marayati R, Flate EL et al (2015) Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 47:1168–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris LG, Chan TA (2015) Therapeutic targeting of tumor suppressor genes. Cancer 121:1357–1368

    Article  CAS  PubMed  Google Scholar 

  • Nakae J, Biggs WH, Kitamura T et al (2002) Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32:245–253

    Article  CAS  PubMed  Google Scholar 

  • Notta F, Chan-Seng-Yue M, Lemire M et al (2016) A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 538:378–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obata F, Miura M (2015) Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan. Nat Commun 6:8332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivares O, Mayers JR, Gouirand V et al (2017) Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun 8:16031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki K, Nagata M, Suzuki M et al (1998) Isolation and characterization of a novel human pancreas-specific gene, pancpin, that is down-regulated in pancreatic cancer cells. Genes Chromosom Cancer 22:179–185

    Article  CAS  PubMed  Google Scholar 

  • Pannala R, Basu A, Petersen GM et al (2009) New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol 10:88–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Pechalrieu D, Etievant C, Arimondo PB (2017) DNA methyltransferase inhibitors in cancer: from pharmacology to translational studies. Biochem Pharmacol 129:1–13

    Article  CAS  PubMed  Google Scholar 

  • Pekala KR, Ma X, Kropp PA et al (2014) Loss of HNF6 expression correlates with human pancreatic cancer progression. Lab Invest 94:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piekarz RL, Frye R, Turner M et al (2009) Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 27:5410–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provenzano PP, Eliceiri KW, Campbell JM et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahib L, Smith BD, Aizenberg R et al (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74:2913–2921

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy A, Mondry A, Holmes CC et al (2008) Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med 5:e184

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhodes DR, Yu J, Shanker K et al (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. NEO 9:166–180

    Article  CAS  Google Scholar 

  • Shen J, Tsoi H, Liang Q et al (2016) Oncogenic mutations and dysregulated pathways in obesity-associated hepatocellular carcinoma. Oncogene 35:6271–6280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    Article  PubMed  Google Scholar 

  • Smid M, Dorssers LCJ, Jenster G (2003) Venn Mapping: clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes. Bioinformatics 19:2065–2071

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Poole L, Dhanwada K et al (2016) Identification of candidate biomarkers and cancer genes AHNAK2 and EPPK1 in pancreatic cancer. Brit J Med Med Rep 18:1–8

    Article  CAS  Google Scholar 

  • Stark C, Breitkreutz BJ, Reguly T et al (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Shibahara J, Fukushima N et al (2011) Claudin-18 is an early-stage marker of pancreatic carcinogenesis. J Histochem Cytochem 59:942–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson MJ, Rubbi L, Dawson DW et al (2015) Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes. PLoS One 10:e0128814

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorvis C, Hatziapostolou M, Mahurkar-Joshi S et al (2016) Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 310:G1124–G1137

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss FU (2014) Pancreatic cancer risk in hereditary pancreatitis. Front Physiol 5:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu P, Nielsen TE, Clausen MH (2016) Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov Today 21:5–10

    Article  CAS  PubMed  Google Scholar 

  • Yachida S, Iacobuzio-Donahue CA (2009) The pathology and genetics of metastatic pancreatic cancer. Arch Pathol Lab Med 133:413–422

    PubMed  Google Scholar 

  • Yachida S, Jones S, Bozic I et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:1114–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen CH, Lu YC, Li CH et al (2012) Functional characterization of glycine N-methyltransferase and its interactive protein DEPDC6/DEPTOR in hepatocellular carcinoma. Mol Med 18:286–296

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa S, Higashi M, Yamada N et al (2011) Mucins in human neoplasms: clinical pathology, gene expression and diagnostic application. Pathol Int 61:697–716

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara K, Shahmoradgoli M, Martínez E et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan HX, Zhou B, Cheng YG et al (2017) Crosstalk between stromal cells and cancer cells in pancreatic cancer: new insights into stromal biology. Cancer Lett 392:83–93

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, He P, Tan H et al (2013) Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin Cancer Res 19:4983–4993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zyromski NJ, Mathur A, Pitt HA et al (2009) Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery 146:258–263

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Kavita Dhanwada (Department of Biology, University of Northern Iowa) for providing us access to tissue culture facilities, and to Mr. Connor Schmidt (Department of Chemistry and Biochemistry, University of Northern Iowa) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nalin C. W. Goonesekere or Xiaosheng Wang.

Ethics declarations

Funding

Nalin Goonesekere received funding from an NSF-EPSCoR Grant (6052.00.24201.0000.21.0122) and a CHAS creative grant from the University of Northern Iowa. Xiaosheng Wang received start-up funds from China Pharmaceutical University. Wyatt Anderson and Alex Smith received SURP and SOAR Grants from the University of Northern Iowa.

Conflict of interest

The authors, Nalin Goonesekere, Xiaosheng Wang, Wyatt Anderson and Alex Smith declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Molecular function classes of genes downregulated in PC as determined by the PANTHER Classification System (Mi et al. 2013). (EPS 916 KB)

Supplementary material 2 (DOCX 80 KB)

Supplementary material 3 (XLS 30 KB)

Supplementary material 4 (XLS 23 KB)

Supplementary material 5 (XLS 22 KB)

Supplementary material 6 (XLSX 13 KB)

Supplementary material 7 (XLSX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goonesekere, N.C.W., Andersen, W., Smith, A. et al. Identification of genes highly downregulated in pancreatic cancer through a meta-analysis of microarray datasets: implications for discovery of novel tumor-suppressor genes and therapeutic targets. J Cancer Res Clin Oncol 144, 309–320 (2018). https://doi.org/10.1007/s00432-017-2558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-017-2558-4

Keywords

Navigation