Skip to main content

Advertisement

Log in

Oncogenes associated with drug resistance in ovarian cancer

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Oncogenes play pivotal roles in the development of cancer, and disturbances in their expression have been implicated in drug resistance. However, an overview of the contribution of oncogenes to drug resistance in ovarian cancer has not previously been reported. This study aimed to review the drug resistance-related oncogenes in ovarian cancer and precisely determine their relationships.

Methods

The oncogenes associated with drug resistance in ovarian cancer from available papers were summarized, and a comprehensive bioinformatics analysis including pathway enrichment, biological processes annotation, protein/gene interaction and microRNA–mRNA interaction was performed.

Results

Total of 25 oncogenes contributing to drug resistance in ovarian cancer was integrated and further analyzed. An oncogene-mediated drug resistance pathway that explains the associations of 21 of these oncogenes in drug resistance was drafted on the basis of previously published papers. The downstream location of v-akt murine thymoma viral oncogene (AKT) and B-cell CLL/lymphoma 2-associated X protein (BAX) with respect to many other oncogenes was determined, indicating that the two genes may play a central role, and the AKT- and BAX-mediated signaling are the main pathways accounting for the involvement of oncogenes in drug resistance in ovarian cancer. Besides, the annotation of biological process indicated that the apoptosis (cell death) and phosphorylation (phosphate metabolic process) might be the two major biological routes through which oncogenes contribute to drug resistance in ovarian cancer. In addition, on the basis of the comprehensive analysis of microRNA–mRNA interactions, 11 microRNAs were identified to be targeted at least 7 of the 25 oncogenes, indicating that those microRNAs could be an important regulator of the 25 oncogenes. Collectively, by integrating and further analyzing the available data on these oncogenes, this study contributes to improving our understanding of the mechanisms by which their expression leads to drug resistance in this ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACTN4:

Actinin, alpha 4

AKT1:

v-akt murine thymoma viral oncogene homolog 1

AKT2:

v-akt murine thymoma viral oncogene homolog 2

BAD:

BCL2-associated agonist of cell death

BAX:

BCL2-associated X protein

BCL2:

B-cell CLL/lymphoma 2

MIEN1:

Migration and invasion enhancer 1

CLU:

Clusterin

CUZD1:

CUB and zona pellucida-like domains 1

DAXX:

Death-domain-associated protein

EGFR:

Epidermal growth factor receptor

ERBB2:

v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2

FOS:

FBJ murine osteosarcoma viral oncogene homolog

JUN:

Jun proto-oncogene

IKBKE:

Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon

KRAS:

Kirsten rat sarcoma viral oncogene homolog

MAPK1:

Mitogen-activated protein kinase 1

MET:

Met proto-oncogene

MYC:

v-myc avian myelocytomatosis viral oncogene homolog

NFKB1:

Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1

NINL:

Ninein-like

NOTCH3:

Notch 3

P53:

Tumor protein p53

PIK3CA:

Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, also know as PI3K

RSF1:

Remodeling and spacing factor 1

SRC:

v-src avian sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog

STAT3:

Signal transducer and activator of transcription 3

URI:

URI1, prefoldin-like chaperone

References

  • Abe A, Minaguchi T, Ochi H, Onuki M, Okada S, Matsumoto K, Satoh T, Oki A, Yoshikawa H (2013) PIK3CA overexpression is a possible prognostic factor for favorable survival in ovarian clear cell carcinoma. Hum Pathol 44:199–207

    CAS  PubMed  Google Scholar 

  • Acosta KB, Tibolla MM, Tiscornia MM, Lorenzati MA, Zapata PD (2011) Recent patents related to phosphorylation signaling pathway on cancer. Recent Pat DNA Gene Seq 5:175–184

    CAS  PubMed  Google Scholar 

  • Annunziata CM, Stavnes HT, Kleinberg L, Berner A, Hernandez LF, Birrer MJ, Steinberg SM, Davidson B, Kohn EC (2010) Nuclear factor kappaB transcription factors are coexpressed and convey a poor outcome in ovarian cancer. Cancer 116:3276–3284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Auner V, Kriegshauser G, Tong D, Horvat R, Reinthaller A, Mustea A, Zeillinger R (2009) KRAS mutation analysis in ovarian samples using a high sensitivity biochip assay. BMC Cancer 9:111

    PubMed Central  PubMed  Google Scholar 

  • Aunoble B, Sanches R, Didier E, Bignon YJ (2000) Major oncogenes and tumor suppressor genes involved in epithelial ovarian cancer (review). Int J Oncol 16:567–576

    CAS  PubMed  Google Scholar 

  • Bast RC Jr, Hennessy B, Mills GB (2009) The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9:415–428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V, Ferrandina G, Benedetti Panici P, Mancuso S, Neri G, Testa JR (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64:280–285

    CAS  PubMed  Google Scholar 

  • Berchuck A, Kohler MF, Bast RC Jr (1992) Oncogenes in ovarian cancer. Hematol Oncol Clin N Am 6:813–827

    CAS  Google Scholar 

  • Brazil DP, Park J, Hemmings BA (2002) PKB binding proteins. Getting in on the Akt. Cell 111:293–303

    CAS  PubMed  Google Scholar 

  • Cannistra SA (2004) Cancer of the ovary. N Engl J Med 351:2519–2529

    CAS  PubMed  Google Scholar 

  • Cao L, Petrusca DN, Satpathy M, Nakshatri H, Petrache I, Matei D (2008) Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling. Carcinogenesis 29:1893–1900

    PubMed Central  CAS  PubMed  Google Scholar 

  • Catuogno S, Cerchia L, Romano G, Pognonec P, Condorelli G, de Franciscis V (2013) miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene 32:341–351

    CAS  PubMed  Google Scholar 

  • Chan JK, Pham H, You XJ, Cloven NG, Burger RA, Rose GS, Van Nostrand K, Korc M, Disaia PJ, Fan H (2005) Suppression of ovarian cancer cell tumorigenicity and evasion of Cisplatin resistance using a truncated epidermal growth factor receptor in a rat model. Cancer Res 65:3243–3248

    CAS  PubMed  Google Scholar 

  • Chen T, Pengetnze Y, Taylor CC (2005) Src inhibition enhances paclitaxel cytotoxicity in ovarian cancer cells by caspase-9-independent activation of caspase-3. Mol Cancer Ther 4:217–224

    CAS  PubMed  Google Scholar 

  • Chen AP, Zhang J, Liu H, Zhao SP, Dai SZ, Sun XL (2009a) Association of EGFR expression with angiogenesis and chemoresistance in ovarian carcinoma. Zhonghua Zhong Liu Za Zhi 31:48–52

    PubMed  Google Scholar 

  • Chen H, Sun JG, Cao XW, Ma XG, Xu JP, Luo FK, Chen ZT (2009b) Preliminary validation of ERBB2 expression regulated by miR-548d-3p and miR-559. Biochem Biophys Res Commun 385:596–600

    CAS  PubMed  Google Scholar 

  • Choi JH, Sheu JJ, Guan B, Jinawath N, Markowski P, Wang TL, Shih Ie M (2009) Functional analysis of 11q13.5 amplicon identifies Rsf-1 (HBXAP) as a gene involved in paclitaxel resistance in ovarian cancer. Cancer Res 69:1407–1415

    PubMed Central  CAS  PubMed  Google Scholar 

  • Codegoni AM, Bertoni F, Colella G, Caspani G, Grassi L, D’Incalci M, Broggini M (1999) Microsatellite instability and frameshift mutations in genes involved in cell cycle progression or apoptosis in ovarian cancer. Oncol Res 11:297–301

    CAS  PubMed  Google Scholar 

  • Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511

    CAS  PubMed  Google Scholar 

  • Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7

    CAS  PubMed  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    PubMed Central  Google Scholar 

  • Dan HC, Jiang K, Coppola D, Hamilton A, Nicosia SV, Sebti SM, Cheng JQ (2004) Phosphatidylinositol-3-OH kinase/AKT and survivin pathways as critical targets for geranylgeranyltransferase I inhibitor-induced apoptosis. Oncogene 23:706–715

    CAS  PubMed  Google Scholar 

  • Davidson B, Trope CG, Wang TL, Shih Ie M (2006) Expression of the chromatin remodeling factor Rsf-1 is upregulated in ovarian carcinoma effusions and predicts poor survival. Gynecol Oncol 103:814–819

    CAS  PubMed  Google Scholar 

  • del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–689

    PubMed  Google Scholar 

  • Della Vittoria Scarpati G, Falcetta F, Carlomagno C, Ubezio P, Marchini S, De Stefano A, Singh VK, D’Incalci M, De Placido S, Pepe S (2012) A specific miRNA signature correlates with complete pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 83:1113–1119

    CAS  PubMed  Google Scholar 

  • Descamps S, Pawlowski V, Revillion F, Hornez L, Hebbar M, Boilly B, Hondermarck H, Peyrat JP (2001a) Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res 61:4337–4340

    CAS  PubMed  Google Scholar 

  • Descamps S, Toillon RA, Adriaenssens E, Pawlowski V, Cool SM, Nurcombe V, Le Bourhis X, Boilly B, Peyrat JP, Hondermarck H (2001b) Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem 276:17864–17870

    CAS  PubMed  Google Scholar 

  • Diehl KM, Keller ET, Ignatoski KMW (2007) Why should we still care about oncogenes? Mol Cancer Ther 6:418–427

    CAS  PubMed  Google Scholar 

  • Ding Z, Liang J, Lu Y, Yu Q, Songyang Z, Lin SY, Mills GB (2006) A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. Proc Natl Acad Sci USA 103:15014–15019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dobrzycka B, Terlikowski SJ, Kinalski M, Kowalczuk O, Niklinska W, Chyczewski L (2011) Circulating free DNA and p53 antibodies in plasma of patients with ovarian epithelial cancers. Ann Oncol 22:1133–1140

    CAS  PubMed  Google Scholar 

  • Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44:839–847

    CAS  PubMed  Google Scholar 

  • Ecker A, Simma O, Hoelbl A, Kenner L, Beug H, Moriggl R, Sexl V (2009) The dark and the bright side of Stat3: proto-oncogene and tumor-suppressor. Front Biosci (Landmark Ed) 14:2944–2958

    CAS  Google Scholar 

  • Eckhoff K, Flurschutz R, Trillsch F, Mahner S, Janicke F, Milde-Langosch K (2013) The prognostic significance of Jun transcription factors in ovarian cancer. J Cancer Res Clin Oncol 139:1673–1680

    CAS  PubMed  Google Scholar 

  • Egloff AM, Grandis JR (2012) Molecular pathways: context-dependent approaches to Notch targeting as cancer therapy. Clin Cancer Res 18:5188–5195

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eliopoulos AG, Kerr DJ, Herod J, Hodgkins L, Krajewski S, Reed JC, Young LS (1995) The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene 11:1217–1228

    CAS  PubMed  Google Scholar 

  • Ellis RE, Yuan JY, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698

    CAS  PubMed  Google Scholar 

  • Fan Y, Yu W, Ye P, Wang H, Wang Z, Meng Q, Duan Y, Liang X, An W (2011) NFKB1 insertion/deletion promoter polymorphism increases the risk of advanced ovarian cancer in a Chinese population. DNA Cell Biol 30:241–245

    CAS  PubMed  Google Scholar 

  • Fishleder AJ (1990) Oncogenes and cancer: clinical applications. Cleve Clin J Med 57:721–726

    CAS  PubMed  Google Scholar 

  • Fister S, Gunthert AR, Aicher B, Paulini KW, Emons G, Grundker C (2009) GnRH-II antagonists induce apoptosis in human endometrial, ovarian, and breast cancer cells via activation of stress-induced MAPKs p38 and JNK and proapoptotic protein Bax. Cancer Res 69:6473–6481

    CAS  PubMed  Google Scholar 

  • Fraser M, Leung BM, Yan X, Dan HC, Cheng JQ, Tsang BK (2003) p53 is a determinant of X-linked inhibitor of apoptosis protein/Akt-mediated chemoresistance in human ovarian cancer cells. Cancer Res 63:7081–7088

    CAS  PubMed  Google Scholar 

  • Fraser M, Bai T, Tsang BK (2008) Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer 122:534–546

    CAS  PubMed  Google Scholar 

  • George JA, Chen T, Taylor CC (2005) SRC tyrosine kinase and multidrug resistance protein-1 inhibitions act independently but cooperatively to restore paclitaxel sensitivity to paclitaxel-resistant ovarian cancer cells. Cancer Res 65:10381–10388

    CAS  PubMed  Google Scholar 

  • Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    CAS  PubMed  Google Scholar 

  • Guan H, Zhang H, Cai J, Wu J, Yuan J, Li J, Huang Z, Li M (2011) IKBKE is over-expressed in glioma and contributes to resistance of glioma cells to apoptosis via activating NF-kappaB. J Pathol 223:436–445

    CAS  PubMed  Google Scholar 

  • Guo JP, Shu SK, He L, Lee YC, Kruk PA, Grenman S, Nicosia SV, Mor G, Schell MJ, Coppola D, Cheng JQ (2009) Deregulation of IKBKE is associated with tumor progression, poor prognosis, and cisplatin resistance in ovarian cancer. Am J Pathol 175:324–333

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta N, Xu Z, El-Sehemy A, Steed H, Fu Y (2013) Notch3 induces epithelial-mesenchymal transition and attenuates carboplatin-induced apoptosis in ovarian cancer cells. Gynecol Oncol 130:200–206

    CAS  PubMed  Google Scholar 

  • Hassan MK, Watari H, Christenson L, Bettuzzi S, Sakuragi N (2011a) Intracellular clusterin negatively regulates ovarian chemoresistance: compromised expression sensitizes ovarian cancer cells to paclitaxel. Tumour Biol 32:1031–1047

    CAS  PubMed  Google Scholar 

  • Hassan MK, Watari H, Han Y, Mitamura T, Hosaka M, Wang L, Tanaka S, Sakuragi N (2011b) Clusterin is a potential molecular predictor for ovarian cancer patient’s survival: targeting clusterin improves response to paclitaxel. J Exp Clin Cancer Res 30:113

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hayakawa J, Ohmichi M, Kurachi H, Kanda Y, Hisamoto K, Nishio Y, Adachi K, Tasaka K, Kanzaki T, Murata Y (2000) Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res 60:5988–5994

    CAS  PubMed  Google Scholar 

  • Herod JJ, Eliopoulos AG, Warwick J, Niedobitek G, Young LS, Kerr DJ (1996) The prognostic significance of Bcl-2 and p53 expression in ovarian carcinoma. Cancer Res 56:2178–2184

    CAS  PubMed  Google Scholar 

  • Hummel R, Wang T, Watson DI, Michael MZ, Van der Hoek M, Haier J, Hussey DJ (2011) Chemotherapy-induced modification of microRNA expression in esophageal cancer. Oncol Rep 26:1011–1017

    CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    PubMed  Google Scholar 

  • Ji T, Gong D, Han Z, Wei X, Yan Y, Ye F, Ding W, Wang J, Xia X, Li F, Hu W, Lu Y, Wang S, Zhou J, Ma D, Gao Q (2013) Abrogation of constitutive Stat3 activity circumvents cisplatin resistant ovarian cancer. Cancer Lett 341:231–239

    CAS  PubMed  Google Scholar 

  • Jiang J, Zheng X, Xu X, Zhou Q, Yan H, Zhang X, Lu B, Wu C, Ju J (2011) Prognostic significance of miR-181b and miR-21 in gastric cancer patients treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin. PLoS ONE 6:e23271

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson SW, Ozols RF, Hamilton TC (1993) Mechanisms of drug resistance in ovarian cancer. Cancer 71:644–649

    CAS  PubMed  Google Scholar 

  • Kato H, Arakawa A, Suzumori K, Kataoka N, Young SR (2004) FISH analysis of BRCA1 copy number in paraffin-embedded ovarian cancer tissue samples. Exp Mol Pathol 76:138–142

    CAS  PubMed  Google Scholar 

  • Kaur M, Radovanovic A, Essack M, Schaefer U, Maqungo M, Kibler T, Schmeier S, Christoffels A, Narasimhan K, Choolani M, Bajic VB (2009) Database for exploration of functional context of genes implicated in ovarian cancer. Nucleic Acids Res 37:D820–D823

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450

    CAS  PubMed  Google Scholar 

  • Kolasa IK, Rembiszewska A, Felisiak A, Ziolkowska-Seta I, Murawska M, Moes J, Timorek A, Dansonka-Mieszkowska A, Kupryjanczyk J (2009) PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer Biol Ther 8:21–26

    CAS  PubMed  Google Scholar 

  • Kumar S, Kumar A, Shah PP, Rai SN, Panguluri SK, Kakar SS (2011) MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines. J Ovarian Res 4:17

    PubMed Central  PubMed  Google Scholar 

  • Lee S, Choi EJ, Jin C, Kim DH (2005) Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol 97:26–34

    CAS  PubMed  Google Scholar 

  • Leong CT, Ong CK, Tay SK, Huynh H (2007) Silencing expression of UO-44 (CUZD1) using small interfering RNA sensitizes human ovarian cancer cells to cisplatin in vitro. Oncogene 26:870–880

    CAS  PubMed  Google Scholar 

  • Leung TH, Wong SC, Chan KK, Chan DW, Cheung AN, Ngan HY (2013) The interaction between C35 and DeltaNp73 promotes chemo-resistance in ovarian cancer cells. Br J Cancer 109:965–975

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Feng Q, Kim JM, Schneiderman D, Liston P, Li M, Vanderhyden B, Faught W, Fung MF, Senterman M, Korneluk RG, Tsang BK (2001) Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology 142:370–380

    CAS  PubMed  Google Scholar 

  • Li Z, Gu X, Fang Y, Xiang J, Chen Z (2012) microRNA expression profiles in human colorectal cancers with brain metastases. Oncol Lett 3:346–350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lum E, Vigliotti M, Banerjee N, Cutter N, Wrzeszczynski KO, Khan S, Kamalakaran S, Levine DA, Dimitrova N, Lucito R (2013) Loss of DOK2 induces carboplatin resistance in ovarian cancer via suppression of apoptosis. Gynecol Oncol 130:369–376

    CAS  PubMed  Google Scholar 

  • Mahner S, Baasch C, Schwarz J, Hein S, Wolber L, Janicke F, Milde-Langosch K (2008) C-Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma. Br J Cancer 99:1269–1275

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manandhar S, Choi BH, Jung KA, Ryoo IG, Song M, Kang SJ, Choi HG, Kim JA, Park PH, Kwak MK (2012) NRF2 inhibition represses ErbB2 signaling in ovarian carcinoma cells: implications for tumor growth retardation and docetaxel sensitivity. Free Radic Biol Med 52:1773–1785

    CAS  PubMed  Google Scholar 

  • Mansouri A, Ridgway LD, Korapati AL, Zhang Q, Tian L, Wang Y, Siddik ZH, Mills GB, Claret FX (2003) Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem 278:19245–19256

    CAS  PubMed  Google Scholar 

  • Marchion DC, Cottrill HM, Xiong Y, Chen N, Bicaku E, Fulp WJ, Bansal N, Chon HS, Stickles XB, Kamath SG, Hakam A, Li L, Su D, Moreno C, Judson PL, Berchuck A, Wenham RM, Apte SM, Gonzalez-Bosquet J, Bloom GC, Eschrich SA, Sebti S, Chen DT, Lancaster JM (2011) BAD phosphorylation determines ovarian cancer chemosensitivity and patient survival. Clin Cancer Res 17:6356–6366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mitamura T, Watari H, Wang L, Kanno H, Hassan MK, Miyazaki M, Katoh Y, Kimura T, Tanino M, Nishihara H, Tanaka S, Sakuragi N (2013) Downregulation of miRNA-31 induces taxane resistance in ovarian cancer cells through increase of receptor tyrosine kinase MET. Oncogenesis 2:e40

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    CAS  PubMed  Google Scholar 

  • Moorehead RA, Singh G (2000) Influence of the proto-oncogene c-fos on cisplatin sensitivity. Biochem Pharmacol 59:337–345

    CAS  PubMed  Google Scholar 

  • Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9(Suppl 1):S4

    PubMed Central  PubMed  Google Scholar 

  • Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K, Yamamoto M, Ju J (2006) Non-coding MicroRNAs hsa-let-7 g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3:317–324

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohta T, Isobe M, Takahashi T, Saitoh-Sekiguchi M, Motoyama T, Kurachi H (2009) The Akt and ERK activation by platinum-based chemotherapy in ovarian cancer is associated with favorable patient outcome. Anticancer Res 29:4639–4647

    CAS  PubMed  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    CAS  PubMed  Google Scholar 

  • Page C, Lin HJ, Jin Y, Castle VP, Nunez G, Huang M, Lin J (2000) Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res 20:407–416

    CAS  PubMed  Google Scholar 

  • Pan B, Yao KS, Monia BP, Dean NM, McKay RA, Hamilton TC, O’Dwyer PJ (2002a) Reversal of cisplatin resistance in human ovarian cancer cell lines by a c-jun antisense oligodeoxynucleotide (ISIS 10582): evidence for the role of transcription factor overexpression in determining resistant phenotype. Biochem Pharmacol 63:1699–1707

    CAS  PubMed  Google Scholar 

  • Pan ZZ, Bruening W, Giasson BI, Lee VM, Godwin AK (2002b) Gamma-synuclein promotes cancer cell survival and inhibits stress—and chemotherapy drug-induced apoptosis by modulating MAPK pathways. J Biol Chem 277:35050–35060

    CAS  PubMed  Google Scholar 

  • Pan WW, Zhou JJ, Liu XM, Xu Y, Guo LJ, Yu C, Shi QH, Fan HY (2013) Death domain-associated protein DAXX promotes ovarian cancer development and chemoresistance. J Biol Chem 288:13620–13630

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pengetnze Y, Steed M, Roby KF, Terranova PF, Taylor CC (2003) Src tyrosine kinase promotes survival and resistance to chemotherapeutics in a mouse ovarian cancer cell line. Biochem Biophys Res Commun 309:377–383

    CAS  PubMed  Google Scholar 

  • Perego P, Giarola M, Righetti SC, Supino R, Caserini C, Delia D, Pierotti MA, Miyashita T, Reed JC, Zunino F (1996) Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer Res 56:556–562

    CAS  PubMed  Google Scholar 

  • Prazeres H, Torres J, Rodrigues F, Pinto M, Pastoriza MC, Gomes D, Cameselle-Teijeiro J, Vidal A, Martins TC, Sobrinho-Simoes M, Soares P (2011) Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene 30:1302–1317

    CAS  PubMed  Google Scholar 

  • Qiu L, Di W, Jiang Q, Scheffler E, Derby S, Yang J, Kouttab N, Wanebo H, Yan B, Wan Y (2005) Targeted inhibition of transient activation of the EGFR-mediated cell survival pathway enhances paclitaxel-induced ovarian cancer cell death. Int J Oncol 27:1441–1448

    CAS  PubMed  Google Scholar 

  • Qu D, Qu H, Fu M, Zhao X, Liu R, Sui L, Zhan Q (2008) Increased expression of Nlp, a potential oncogene in ovarian cancer, and its implication in carcinogenesis. Gynecol Oncol 110:230–236

    CAS  PubMed  Google Scholar 

  • Raffo AJ, Kim AL, Fine RL (2000) Formation of nuclear Bax/p53 complexes is associated with chemotherapy induced apoptosis. Oncogene 19:6216–6228

    CAS  PubMed  Google Scholar 

  • Rahman MT, Nakayama K, Rahman M, Katagiri H, Katagiri A, Ishibashi T, Ishikawa M, Iida K, Nakayama S, Otsuki Y, Miyazaki K (2012) Notch3 overexpression as potential therapeutic target in advanced stage chemoresistant ovarian cancer. Am J Clin Pathol 138:535–544

    CAS  PubMed  Google Scholar 

  • Ratner ES, Keane FK, Lindner R, Tassi RA, Paranjape T, Glasgow M, Nallur S, Deng Y, Lu L, Steele L, Sand S, Muller RU, Bignotti E, Bellone S, Boeke M, Yao X, Pecorelli S, Ravaggi A, Katsaros D, Zelterman D, Cristea MC, Yu H, Rutherford TJ, Weitzel JN, Neuhausen SL, Schwartz PE, Slack FJ, Santin AD, Weidhaas JB (2012) A KRAS variant is a biomarker of poor outcome, platinum chemotherapy resistance and a potential target for therapy in ovarian cancer. Oncogene 31:4559–4566

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rose SL (2009) Notch signaling pathway in ovarian cancer. Int J Gynecol Cancer 19:564–566

    PubMed  Google Scholar 

  • Ross JS, Ali SM, Wang K, Palmer G, Yelensky R, Lipson D, Miller VA, Zajchowski D, Shawver LK, Stephens PJ (2013) Comprehensive genomic profiling of epithelial ovarian cancer by next generation sequencing-based diagnostic assay reveals new routes to targeted therapies. Gynecol Oncol 130:554–559

    CAS  PubMed  Google Scholar 

  • Ryland GL, Bearfoot JL, Doyle MA, Boyle SE, Choong DY, Rowley SM, Tothill RW, Gorringe KL, Campbell IG (2012) MicroRNA genes and their target 3′-untranslated regions are infrequently somatically mutated in ovarian cancers. PLoS ONE 7:e35805

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scanlon KJ, Ishida H, Kashani-Sabet M (1994) Ribozyme-mediated reversal of the multidrug-resistant phenotype. Proc Natl Acad Sci USA 91:11123–11127

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schuyer M, van der Burg ME, Henzen-Logmans SC, Fieret JH, Klijn JG, Look MP, Foekens JA, Stoter G, Berns EM (2001) Reduced expression of BAX is associated with poor prognosis in patients with epithelial ovarian cancer: a multifactorial analysis of TP53, p21, BAX and BCL-2. Br J Cancer 85:1359–1367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Secord AA, Blessing JA, Armstrong DK, Rodgers WH, Miner Z, Barnes MN, Lewandowski G, Mannel RS (2008) Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: a Gynecologic Oncology Group study. Gynecol Oncol 108:493–499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sen T, Sen N, Brait M, Begum S, Chatterjee A, Hoque MO, Ratovitski E, Sidransky D (2011) DeltaNp63alpha confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation. Cancer Res 71:1167–1176

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sheng WJ, Jiang H, Wu DL, Zheng JH (2013) Early responses of the STAT3 pathway to platinum drugs are associated with cisplatin resistance in epithelial ovarian cancer. Braz J Med Biol Res 46:650–658

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    PubMed  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    PubMed  Google Scholar 

  • Skirnisdottir I, Sorbe B, Seidal T (2001) The growth factor receptors HER-2/neu and EGFR, their relationship, and their effects on the prognosis in early stage (FIGO I–II) epithelial ovarian carcinoma. Int J Gynecol Cancer 11:119–129

    CAS  PubMed  Google Scholar 

  • Smith V, Hobbs S, Court W, Eccles S, Workman P, Kelland LR (2002) ErbB2 overexpression in an ovarian cancer cell line confers sensitivity to the HSP90 inhibitor geldanamycin. Anticancer Res 22:1993–1999

    CAS  PubMed  Google Scholar 

  • Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C (2008) Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol 111:478–486

    CAS  PubMed  Google Scholar 

  • Srikantan S, Abdelmohsen K, Lee EK, Tominaga K, Subaran SS, Kuwano Y, Kulshrestha R, Panchakshari R, Kim HH, Yang X, Martindale JL, Marasa BS, Kim MM, Wersto RP, Indig FE, Chowdhury D, Gorospe M (2011) Translational control of TOP2A influences doxorubicin efficacy. Mol Cell Biol 31:3790–3801

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449

    CAS  PubMed  Google Scholar 

  • Strobel T, Tai YT, Korsmeyer S, Cannistra SA (1998) BAD partly reverses paclitaxel resistance in human ovarian cancer cells. Oncogene 17:2419–2427

    CAS  PubMed  Google Scholar 

  • Tang MK, Zhou HY, Yam JW, Wong AS (2010) c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia 12:128–138

    PubMed Central  CAS  PubMed  Google Scholar 

  • Theurillat JP, Metzler SC, Henzi N, Djouder N, Helbling M, Zimmermann AK, Jacob F, Soltermann A, Caduff R, Heinzelmann-Schwarz V, Moch H, Krek W (2011) URI is an oncogene amplified in ovarian cancer cells and is required for their survival. Cancer Cell 19:317–332

    CAS  PubMed  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    CAS  PubMed  Google Scholar 

  • Vaughan S, Coward JI, Bast RC Jr, Berchuck A, Berek JS, Brenton JD, Coukos G, Crum CC, Drapkin R, Etemadmoghadam D, Friedlander M, Gabra H, Kaye SB, Lord CJ, Lengyel E, Levine DA, McNeish IA, Menon U, Mills GB, Nephew KP, Oza AM, Sood AK, Stronach EA, Walczak H, Bowtell DD, Balkwill FR (2011) Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer 11:719–725

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vogt U, Falkiewicz B, Bielawski K, Bosse U, Schlotter CM (2000) Relationship of c-myc and erbB oncogene family gene aberrations and other selected factors to ex vivo chemosensitivity of ovarian cancer in the modified ATP-chemosensitivity assay. Acta Biochim Pol 47:157–164

    CAS  PubMed  Google Scholar 

  • Vosa U, Vooder T, Kolde R, Fischer K, Valk K, Tonisson N, Roosipuu R, Vilo J, Metspalu A, Annilo T (2011) Identification of miR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung cancer. Genes Chromosomes Cancer 50:812–822

    CAS  PubMed  Google Scholar 

  • Wang SC, Hung MC (2000) Transcriptional targeting of the HER-2/neu oncogene. Drugs Today (Barc) 36:835–843

    CAS  Google Scholar 

  • Wang Y, Kristensen GB, Helland A, Nesland JM, Borresen-Dale AL, Holm R (2005) Protein expression and prognostic value of genes in the erb-b signaling pathway in advanced ovarian carcinomas. Am J Clin Pathol 124:392–401

    CAS  PubMed  Google Scholar 

  • Wang J, Zhou JY, Wu GS (2007) ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells. Cancer Res 67:11933–11941

    CAS  PubMed  Google Scholar 

  • Wang Y, Qu Y, Niu XL, Sun WJ, Zhang XL, Li LZ (2011) Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine 56:365–375

    CAS  PubMed  Google Scholar 

  • Wang W, Corrigan-Cummins M, Hudson J, Maric I, Simakova O, Neelapu SS, Kwak LW, Janik JE, Gause B, Jaffe ES, Calvo KR (2012) MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. Haematologica 97:586–594

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wei L, Xue T, Wang J, Chen B, Lei Y, Huang Y, Wang H, Xin X (2009) Roles of clusterin in progression, chemoresistance and metastasis of human ovarian cancer. Int J Cancer 125:791–806

    CAS  PubMed  Google Scholar 

  • Weng D, Song X, Xing H, Ma X, Xia X, Weng Y, Zhou J, Xu G, Meng L, Zhu T, Wang S, Ma D (2009) Implication of the Akt2/survivin pathway as a critical target in paclitaxel treatment in human ovarian cancer cells. Cancer Lett 273:257–265

    CAS  PubMed  Google Scholar 

  • Wu H, Cao Y, Weng D, Xing H, Song X, Zhou J, Xu G, Lu Y, Wang S, Ma D (2008) Effect of tumor suppressor gene PTEN on the resistance to cisplatin in human ovarian cancer cell lines and related mechanisms. Cancer Lett 271:260–271

    CAS  PubMed  Google Scholar 

  • Wu H, Huang M, Lu M, Zhu W, Shu Y, Cao P, Liu P (2013) Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chemother Pharmacol 71:1159–1171

    CAS  PubMed  Google Scholar 

  • Xiang Y, Ma N, Wang D, Zhang Y, Zhou J, Wu G, Zhao R, Huang H, Wang X, Qiao Y, Li F, Han D, Wang L, Zhang G, Gao X (2013) MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene 33:378–386

    PubMed  Google Scholar 

  • Xing H, Weng D, Chen G, Tao W, Zhu T, Yang X, Meng L, Wang S, Lu Y, Ma D (2008) Activation of fibronectin/PI-3 K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Lett 261:108–119

    CAS  PubMed  Google Scholar 

  • Xu FJ, Stack S, Boyer C, O’Briant K, Whitaker R, Mills GB, Yu YH, Bast RC Jr (1997) Heregulin and agonistic anti-p185(c-erbB2) antibodies inhibit proliferation but increase invasiveness of breast cancer cells that overexpress p185(c-erbB2): increased invasiveness may contribute to poor prognosis. Clin Cancer Res 3:1629–1634

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Tsuda H, Honda K, Onozato K, Takano M, Tamai S, Imoto I, Inazawa J, Yamada T, Matsubara O (2009) Actinin-4 gene amplification in ovarian cancer: a candidate oncogene associated with poor patient prognosis and tumor chemoresistance. Mod Pathol 22:499–507

    CAS  PubMed  Google Scholar 

  • Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291

    CAS  PubMed  Google Scholar 

  • Yang N, Huang J, Greshock J, Liang S, Barchetti A, Hasegawa K, Kim S, Giannakakis A, Li C, O’Brien-Jenkins A, Katsaros D, Butzow R, Coukos G, Zhang L (2008) Transcriptional regulation of PIK3CA oncogene by NF-kappaB in ovarian cancer microenvironment. PLoS ONE 3:e1758

    PubMed Central  PubMed  Google Scholar 

  • Yang G, Xiao X, Rosen DG, Cheng X, Wu X, Chang B, Liu G, Xue F, Mercado-Uribe I, Chiao P, Du X, Liu J (2011) The biphasic role of NF-kappaB in progression and chemoresistance of ovarian cancer. Clin Cancer Res 17:2181–2194

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yin F, Liu X, Li D, Wang Q, Zhang W, Li L (2013) Tumor suppressor genes associated with drug resistance in ovarian cancer (review). Oncol Rep 30:3–10

    CAS  PubMed  Google Scholar 

  • Yu D (1998) The role of oncogenes in drug resistance. Cytotechnology 27:283–292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan ZQ, Feldman RI, Sussman GE, Coppola D, Nicosia SV, Cheng JQ (2003) AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. J Biol Chem 278:23432–23440

    CAS  PubMed  Google Scholar 

  • Yuan Z, Wang F, Zhao Z, Zhao X, Qiu J, Nie C, Wei Y (2011) BIM-mediated AKT phosphorylation is a key modulator of arsenic trioxide-induced apoptosis in cisplatin-sensitive and-resistant ovarian cancer cells. PLoS ONE 6:e20586

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yue P, Zhang X, Paladino D, Sengupta B, Ahmad S, Holloway RW, Ingersoll SB, Turkson J (2012) Hyperactive EGF receptor, Jaks and Stat3 signaling promote enhanced colony-forming ability, motility and migration of cisplatin-resistant ovarian cancer cells. Oncogene 31:2309–2322

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Dang C, Ma Q, Shimahara Y (2005) Expression of nerve growth factor receptors and their prognostic value in human pancreatic cancer. Oncol Rep 14:161–171

    CAS  PubMed  Google Scholar 

  • Zhang X, Liu P, Zhang B, Wang A, Yang M (2010) Role of STAT3 decoy oligodeoxynucleotides on cell invasion and chemosensitivity in human epithelial ovarian cancer cells. Cancer Genet Cytogenet 197:46–53

    CAS  PubMed  Google Scholar 

  • Zhang P, Zhou M, Jiang H, Zhang H, Shi B, Pan X, Gao H, Sun H, Li Z (2013) Exon 4 deletion variant of epidermal growth factor receptor enhances invasiveness and cisplatin resistance in epithelial ovarian cancer. Carcinogenesis 34:2639–2646

    CAS  PubMed  Google Scholar 

  • Zhao M, Sun J, Zhao Z (2012a) Distinct and competitive regulatory patterns of tumor suppressor genes and oncogenes in ovarian cancer. PLoS ONE 7:e44175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Z, Wang J, Tang J, Liu X, Zhong Q, Wang F, Hu W, Yuan Z, Nie C, Wei Y (2012b) JNK- and Akt-mediated Puma expression in the apoptosis of cisplatin-resistant ovarian cancer cells. Biochem J 444:291–301

    CAS  PubMed  Google Scholar 

  • Zhou BP, Hu MC, Miller SA, Yu Z, Xia W, Lin SY, Hung MC (2000) HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway. J Biol Chem 275:8027–8031

    CAS  PubMed  Google Scholar 

  • Zhou T, Bao Y, Ye S, Weng D, Chen G, Lu Y, Ma D, Wang S (2010) Effect of spindle checkpoint on Akt2-mediated paclitaxel-resistance in A2780 ovarian cancer cells. J Huazhong Univ Sci Technol Med Sci 30:206–211

    CAS  PubMed  Google Scholar 

  • Zhu W, Shan X, Wang T, Shu Y, Liu P (2010) miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 127:2520–2529

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Natural Science Foundation of China (Grant No. 81302283) and China Postdoctoral Science Foundation (No. 2014M552535XB and No. 2014M552291).

Conflict of interest

The authors confirm that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Gao, Y., Lu, Y. et al. Oncogenes associated with drug resistance in ovarian cancer. J Cancer Res Clin Oncol 141, 381–395 (2015). https://doi.org/10.1007/s00432-014-1765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1765-5

Keywords

Navigation