Skip to main content

Advertisement

Log in

In vitro and in vivo anti-tumor activities of anti-EGFR single-chain variable fragment fused with recombinant gelonin toxin

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Epidermal growth factor receptor (EGFR) plays an important role in the growth and metastasis of many solid tumors. Strategies that target EGFR hold promising therapeutic potential for the treatment for non-small cell lung cancer (NSCLC), as EGFR is normally overexpressed in these tumors. This study was designed to determine whether an anti-EGFR immunotoxin has anti-tumor activity against NSCLC, and if so, to further investigate the possible mechanisms of cytotoxicity.

Methods

A fusion protein of anti-EGFR single-chain variable fragment (anti-EGFR scFv) and the plant toxin gelonin (rGel) was constructed, expressed in bacteria, and purified to homogeneity. Cytotoxicity of anti-EGFR scFv/rGel (E/rG) immunotoxin was assessed on A549, HCC827, and H1975 cells (EGFR-overexpressing NSCLC-derived cell lines) and A549 xenografts in nude mice.

Results

Cytotoxicity experiments using E/rG on A549, HCC827, and H1975 cells demonstrated that E/rG can specifically inhibit proliferation of these cells, whereas it did not affect the proliferation of Raji cells that do not express EGFR. Treatment for A549 xenografts in nude mice with E/rG resulted in significant suppression of tumor growth compared to controls. Immunofluorescence in frozen tissue sections confirmed that E/rG could specifically bind to tumor tissues in nude mice bearing A549 tumor xenografts, while rGel alone showed no binding activity. Furthermore, E/rG inhibited the growth of A549 cells by cytotoxic effects that blocked tumor proliferation, and the immunotoxin-induced cell death may be mediated by autophagy.

Conclusions

These results showed that E/rG might have significant potential as a novel clinical therapeutic agent against human NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-ME:

2-mercaptoethanol

EGFR:

Epidermal growth factor receptor

GuHCl:

Guanidine hydrochloride

scFv:

Single-chain variable fragment

rGel:

Recombinant gelonin toxin

G4S:

Glycine–glycine–glycine–glycine–serine

MVD:

Microvessel density

NSCLC:

Non-small cell lung cancer

IPTG:

Isopropyl β-d-thiogalactoside

PEA:

Pseudomonas exotoxin A

TUNEL:

TdT-mediated dUTP-X nick end labeling

References

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–763

    Article  PubMed  CAS  Google Scholar 

  • Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W, Ruhl J, Howlader N, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Cronin K, Chen HS, Feuer EJ, Stinchcomb DG, Edwards BK (eds) (2009) SEER Cancer statistics review, 1975–2007. National Cancer Institute, Bethesda

  • Baluna R, Sausville EA, Stone MJ, StetlerStevenson MA, Uhr JW, Vitetta ES (1996) Decreases in levels of serum fibronectin predict the severity of vascular leak syndrome in patients treated with ricin A chain-containing immunotoxins. Clin Cancer Res 2(10):1705–1712

    PubMed  CAS  Google Scholar 

  • Borghaei H, Langer CJ, Millenson M, Ruth KJ, Litwin S, Tuttle H, Seldomridge JS, Rovito M, Mintzer D, Cohen R, Treat J (2008) Phase II study of paclitaxel, carboplatin, and cetuximab as first line treatment, for patients with advanced non-small cell lung cancer (NSCLC) results of OPN-017. J Thorac Oncol 3(11):1286–1292

    Article  PubMed  Google Scholar 

  • Brekke OH, Sandlie I (2003) Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2(1):52–62

    Article  PubMed  CAS  Google Scholar 

  • Brereton HM, Chamberlain D, Yang RC, Tea M, McNeil S, Coster DJ, Williams KA (2007) Single chain antibody fragments for ocular use produced at high levels in a commercial wheat variety. J Biotechnol 129(3):539–546

    Article  PubMed  CAS  Google Scholar 

  • Bruell D, Stocker M, Huhn M, Redding N, Kupper M, Schumacher P, Paetz A, Bruns CJ, Haisma HJ, Fischer R, Finnern R, Barth S (2003) The recombinant anti-EGF receptor immunotoxin 425(scFv)-ETA’ suppresses growth of a highly metastatic pancreatic carcinoma cell line. Int J Oncol 23(4):1179–1186

    PubMed  CAS  Google Scholar 

  • Bruell D, Bruns CJ, Yezhelyev M, Huhn M, Muller J, Ischenko I, Fischer R, Finnern R, Jauch KW, Barth S (2005) Recombinant anti-EGFR immunotoxin 425(scFv)-ETA’ demonstrates anti-tumor activity against disseminated human pancreatic cancer in nude mice. Int J Mol Med 15(2):305–313

    PubMed  CAS  Google Scholar 

  • Bush T, Freeman D, Ogbagabriel S, Belmontes B, Kozlosky C, Baher A, Johnson C, Van G, Cerretti D, Radinsky R (2005) Activity of panitumumab alone and in combination with chemotherapy against mutant epidermal growth factor receptor (EGFr)-expressing non-small cell lung carcinoma (NSCLC) cell lines and xenografts. Clin Cancer Res 11(24):9047s–9047s

    Google Scholar 

  • Cao Y, Marks JD, Marks JW, Cheung LH, Kim S, Rosenblum MG (2009) Construction and Characterization of Novel, Recombinant Immunotoxins Targeting the Her2/neu Oncogene Product: in vitro and in vivo Studies. Cancer Res 69(23):8987–8995

    Article  PubMed  CAS  Google Scholar 

  • Fish-Steagall A, Searcy P, Sipples R (2006) Clinical experience with anti-EGFR therapy. Semin Oncol Nurs 22(1 Suppl 1):10–19

    Article  PubMed  Google Scholar 

  • FitzGerald DJ, Wayne AS, Kreitman RJ, Pastan I (2011) Treatment of hematologic malignancies with immunotoxins and antibody-drug conjugates. Cancer Res 71(20):6300–6309. doi:10.1158/0008-5472.CAN-11-1374

    Article  PubMed  CAS  Google Scholar 

  • Frankel AE, Woo J-H, Neville DM (2009) Immunotoxins Principles of Cancer Biotherapy. In: Oldham RK, Dillman RO (eds). Springer, Netherlands, pp 407–449. doi:10.1007/978-90-481-2289-9_11

  • Freeman DJ, Bush T, Ogbagabriel S, Belmontes B, Juan T, Plewa C, Van G, Johnson C, Radinsky R (2009) Activity of panitumumab alone or with chemotherapy in non-small cell lung carcinoma cell lines expressing mutant epidermal growth factor receptor. Mol Cancer Ther 8(6):1536–1546

    Article  PubMed  CAS  Google Scholar 

  • Herbst RS, Shin DM (2002) Monoclonal antibodies to target epidermal growth factor receptor-positive tumors—A new paradigm for cancer therapy. Cancer 94(5):1593–1611

    Article  PubMed  CAS  Google Scholar 

  • Karamouzis MV, Grandis JR, Argiris A (2007) Therapies directed against epidermal growth factor receptor in aerodigestive carcinomas. Jama-J Am Med Assoc 298(1):70–82

    Article  CAS  Google Scholar 

  • Lutterbuese R, Raum T, Kischel R, Hoffmann P, Mangold S, Rattel B, Friedrich M, Thomas O, Lorenczewski G, Rau D, Schaller E, Herrmann I, Wolf A, Urbig T, Baeuerle PA, Kufer P (2010) T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS-and BRAF-mutated colorectal cancer cells. Proc Nat Acad Sci USA 107(28):12605–12610

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Torrecuadrada JL, Cheung LH, Lopez-Serra P, Barderas R, Canamero M, Ferreiro S, Rosenblum MG, Casal JI (2008) Antitumor activity of fibroblast growth factor receptor 3-specific immunotoxins in a xenograft mouse model of bladder carcinoma is mediated by apoptosis. Mol Cancer Ther 7(4):862–873

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn J (2001) The epidermal growth factor receptor as a target for cancer therapy. Endocr Relat Cancer 8(1):3–9

    Article  PubMed  CAS  Google Scholar 

  • Mohamedali KA, Kedar D, Sweeney P, Kamat A, Davis DW, Eve BY, Huang S, Thorpe PE, Dinney CP, Rosenblum MG (2005) The vascular-targeting fusion toxin VEGF(121)/rGel inhibits the growth of orthotopic human bladder carcinoma tumors. Neoplasia 7(10):912–920

    Article  PubMed  CAS  Google Scholar 

  • Nimmanapalli R, Lyu MA, Du M, Keating MJ, Rosenblum MG, Gandhi V (2007) The growth factor fusion construct containing B-lymphocyte stimulator (BLyS) and the toxin rGel induces apoptosis specifically in BAFF-R-positive CLL cells. Blood 109(6):2557–2564

    Article  PubMed  CAS  Google Scholar 

  • Pastan I (2003) Immunotoxins containing Pseudomonas exotoxin A: a short history. Cancer Immunol Immunother 52(5):338–341

    PubMed  Google Scholar 

  • Pirie CM, Hackel BJ, Rosenblum MG, Wittrup KD (2011) Convergent potency of internalized gelonin immunotoxins across varied cell lines, antigens, and targeting moieties. J Biol Chem 286(6):4165–4172. doi:10.1074/jbc.M110.186973

    Article  PubMed  CAS  Google Scholar 

  • Presta L (2003) Antibody engineering for therapeutics. Curr Opin Struct Biol 13(4):519–525

    Article  PubMed  CAS  Google Scholar 

  • Roovers RC, Laeremans T, Huang L, De Taeye S, Verkleij AJ, Revets H, de Haard HJ, Henegouwen PMPV (2007) Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR Nanobodies. Cancer Immunol Immun 56(3):303–317

    CAS  Google Scholar 

  • Rosenblum MG, Cheung LH, Liu YY, Marks JW (2003) Design, expression, purification, and characterization, in vitro and in vivo, of an antimelanoma single-chain Fv antibody fused-to the toxin gelonin. Cancer Res 63(14):3995–4002

    PubMed  CAS  Google Scholar 

  • Rossi A, Maione P, Gridelli C (2006) Cetuximab in advanced non-small cell lung cancer. Crit Rev Oncol Hematol 59(2):139–149

    Article  PubMed  Google Scholar 

  • Schaffitzel C, Hanes J, Jermutus L, Pluckthun A (1999) Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J Immunol Methods 231(1–2):119–135

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Reiser P, Hills D, Gullick WJ, Wels W (1998) Expression of an oncogenic mutant EGF receptor markedly increases the sensitivity of cells to an EGF-receptor-specific antibody-toxin. Int J Cancer 75(6):878–884

    Article  PubMed  CAS  Google Scholar 

  • Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5(2):147–159

    Article  PubMed  CAS  Google Scholar 

  • Selbo PK, Sivam G, Fodstad O, Sandvig K, Berg K (2000) Photochemical internalisation increases the cytotoxic effect of the immunotoxin MOC31-gelonin. Int J Cancer 87(6):853–859. doi:10.1002/1097-0215(20000915)87:6<853:AID-IJC15>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  • Siegall CB, Liggitt D, Chace D, Mixan B, Sugai J, Davidson T, Steinitz M (1997) Characterization of vascular leak syndrome induced by the toxin component of Pseudomonas exotoxin-based immunotoxins and its potential inhibition with nonsteroidal anti-inflammatory drugs. Clin Cancer Res 3(3):339–345

    PubMed  CAS  Google Scholar 

  • Smallshaw JE, Ghetie V, Rizo J, Fulmer JR, Trahan LL, Ghetie MA, Vitetta ES (2003) Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat Biotechnol 21(4):387–391

    Article  PubMed  CAS  Google Scholar 

  • Society AC (2010) Cancer Facts and Figures 2010. American Cancer Society, Atlanta

    Google Scholar 

  • Sridhar SS, Seymour L, Shepherd FA (2003) Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol 4(7):397–406

    Article  PubMed  CAS  Google Scholar 

  • Stirpe FOS, Pihl A (1980) Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells. Isolation, characterization, and preparation of cytotoxic complexes with concanavalin A. J Biol Chem 255:6947–6953

    PubMed  CAS  Google Scholar 

  • Stish BJ, Oh S, Vallera DA (2008) Anti-glioblastoma effect of a recombinant bispecific cytotoxin cotargeting human IL-13 and EGF receptors in a mouse xenograft model. J Neuro-Oncol 87(1):51–61

    Article  CAS  Google Scholar 

  • Veenendaal LM, Jin HQ, Ran S, Cheung L, Navone N, Marks JW, Waltenberger J, Thorpe P, Rosenblum MG (2002a) In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors (vol 99, pg 7866, 2002). Proc Nat Acad Sci USA 99(16):10941

    CAS  Google Scholar 

  • Veenendaal LM, Jin H, Ran S, Cheung L, Navone N, Marks JW, Waltenberger J, Thorpe P, Rosenblum MG (2002b) In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proc Natl Acad Sci USA 99(12):7866–7871

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by China National Science and Technology Programs of Significant New Drugs to Create (No.2009ZX09103-714) and the National Key Basic Research Program (973 Program) of China (No. 2010CB529900).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Li.

Additional information

Xikun Zhou, Ji Qiu, and Zhen Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Qiu, J., Wang, Z. et al. In vitro and in vivo anti-tumor activities of anti-EGFR single-chain variable fragment fused with recombinant gelonin toxin. J Cancer Res Clin Oncol 138, 1081–1090 (2012). https://doi.org/10.1007/s00432-012-1181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1181-7

Keywords

Navigation