Skip to main content

Advertisement

Log in

Reconstitution and functional analyses of neutrophils and distinct subsets of monocytes after allogeneic stem cell transplantation

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to investigate the recovery of the innate immune system within the first 100 days after allogeneic peripheral blood stem cell transplantation (PBSCT) and to elucidate a potential correlation with such important events as severe infectious complications or graft-versus-host disease (GvHD).

Methods

In 30 consecutive patients who underwent allogeneic PBSCT, absolute numbers of neutrophils and monocytes were determined and different functional analyses performed at different time points (day +30, +60 and +90, respectively). The capacity to phagocyte Escherichia coli (E. coli) as well as the induction of oxidative burst after incubation with different stimuli (Phorbol-12-myristate-13-acetate; PMA, the chemotactic peptide N-formyl-Met-Leu-Phe; f-MLP or opsonized E. coli) were analysed after engraftment.

Results

There was a rapid reconstitution concerning the capability of both neutrophils and monocytes to phagocyte E. coli without a significant increase between day +30 and +90. In contrast, a twofold increase of monocyte oxidative burst after incubation with PMA at day +90 was observed (P = 0.017). Furthermore, the ability of neutrophils to induce oxidative burst after ingestion with E. coli was impaired on day +30 with a significant functional reconstitution on day +60 (P = 0.01). The oxidative burst activity following incubation with f-MLP did not show significant changes after stem cell engraftment. Analysis of numeric reconstitution of CD14+CD16+ monocytes demonstrated a potential correlation with a decreased incidence of chronic GvHD.

Conclusion

The functional recovery of neutrophils and monocytes in the early period after allogeneic PBSCT differs not only concerning phagocytosis and oxidative burst but also with respect to the stimulus and the cell population that was analysed for oxidative burst activity. The subset of CD16+CD14+ monocytes might be a predictor for a reduced risk of chronic GvHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ancuta P, Weiss L, Haeffner-Cavaillon N (2000) CD14+CD16++ cells derived in vitro from peripheral blood monocytes exhibit phenotypic and functional dendritic cell-like characteristics. Eur J Immunol 30:1872–1883

    Article  PubMed  CAS  Google Scholar 

  • Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, Espevik T, Ziegler-Heitbrock L (2002) The proinflammatory CD14+CD16+ DR++ monocytes are a major source of TNF. J Immunol 168:3536–3542

    PubMed  CAS  Google Scholar 

  • Dayyani F, Joeinig A, Ziegler-Heitbrock L, Schmidmaier R, Straka C, Emmerich B, Meinhardt G (2004) Autologous stem-cell transplantation restores the functional properties of CD14+CD16+ monocyctes in patients with myeloma and lymphoma. J Leukoc Biol 75:207–213

    Article  PubMed  CAS  Google Scholar 

  • Delves PJ, Roitt IM (2000) The immune system. N Engl J Med 343:37–49

    Article  PubMed  CAS  Google Scholar 

  • Diacovich L, Gorvel JP (2010) Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol 8:117–128

    Article  PubMed  CAS  Google Scholar 

  • Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ (2005) National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant 11:945–956

    Article  PubMed  Google Scholar 

  • Fingerle-Rowson G, Angstwurm M, Andreesen R, Ziegler-Heitbrock HW (1998) Selective depletion of CD14+CD16+ monocytes by glucocorticoid therapy. Clin Exp Immunol 112:501–506

    Article  PubMed  CAS  Google Scholar 

  • George B, Pati N, Gilroy N, Ratnamohan M, Huang G, Kerridge I, Hertzberg M, Gottlieb D, Bradstock K (2010) Pre-transplant cytomegalovirus (CMV) serostatus remains the most important determinant of CMV reactivation after allogeneic hematopoietic stem cell transplantation in the era of surveillance and preemptive therapy. Transpl Infect Dis 12:322–329

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295

    Article  PubMed  CAS  Google Scholar 

  • Kawanaka N, Yamamura M, Aita T, Morita Y, Okamoto A, Kawashima M, Iwahashi M, Ueno A, Ohmoto Y, Makino H (2002) CD14+CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis Rheum 46:2578–2586

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi SD, DeLeo FR (2009) Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip Rev Syst Biol Med 1:309–333

    Article  PubMed  CAS  Google Scholar 

  • Krause SW, Rothe G, Gnad M, Reichle A, Andreesen A (2003) Blood leukocyte subsets and cytokine profile after autologous peripheral blood stem cell transplantation. Ann Haematol 82:628–636

    Article  CAS  Google Scholar 

  • Miyagawa B, Klingemann HG (1997) Phagocytosis and burst activity of granulocytes and monocytes after stem cell transplantation. J Lab Clin Med 129:634–637

    Article  PubMed  CAS  Google Scholar 

  • Ottinger HD, Beelen DW, Scheulen B, Schaefer UW, Grosse-Wilde H (1996) Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow. Blood 88:2775–2779

    PubMed  CAS  Google Scholar 

  • Passlick B, Flieger D, Ziegler-Heitbrock HWL (1989) Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74:2527–2534

    PubMed  CAS  Google Scholar 

  • Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, Thomas ED (1995) 1994 Consensus conference on acute GvHD grading. Bone Marrow Transplant 15:825–828

    PubMed  CAS  Google Scholar 

  • Roberts MM, To LB, Gillis D, Mundy J, Rawling C, Ng K, Juttner CA (1993) Immune reconstitution following peripheral blood stem cell transplantation, autologous bone marrow transplantation and allogeneic bone marrow transplantation. Bone Marrow Transplant 12:469–475

    PubMed  CAS  Google Scholar 

  • Saleh MN, Goldman SJ, LoBuglio AF, Beall AC, Sabio H, McCord MC, Minasian L, Alpaugh RK, Weiner LM, Munn DH (1995) CD16+ monocytes in patients with cancer: spontaneous elevation and pharmacologic induction by recombinant human macrophage colonystimulating factor. Blood 85:2910–2917

    PubMed  CAS  Google Scholar 

  • Scholl S, Hanke M, Höffken K, Sayer HG (2007) Distinct reconstitution of neutrophil functions after allogeneic peripheral blood stem cell transplantation. J Cancer Res Clin Oncol 133:411–415

    Article  PubMed  CAS  Google Scholar 

  • Slavin S, Nagler A, Naparstek E, Kaelushnik Y, Aker M, Cividalli G, Varadi G, Kirschbaum M, Ackerstein A, Samuel S, Amar A, Brautbar C, Ben-Tal O, Eldar A, Or R (1998) Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and non-malignant hematologic diseases. Blood 91:756–763

    PubMed  CAS  Google Scholar 

  • Van den Broek PJ, van den Meer JW, Leijh PC, Zwaan F, van den Barselaar M, van Furth R (1981) Functions of granulocytes after allogeneic bone marrow transplantation. Blut 42:253–257

    Article  PubMed  Google Scholar 

  • Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  PubMed  CAS  Google Scholar 

  • Volk J, Kleine HD, Buthmann U, Freund M (2000) Oxidative burst measurement in patients treated with cytostatics. Influence of G-CSF and role as a prognostic factor. Ann Haematol 79:187–197

    Article  CAS  Google Scholar 

  • Yona S, Jung S (2010) Monocytes: subsets, origins, fates and functions. Curr Opin Hematol 17:53–59

    Article  PubMed  Google Scholar 

  • Ziegler-Heitbrock HWL (1996) Heterogeneity of human blood monocytes: the CD14+CD16+ subpopulation. Immunol Today 17:424–428

    Article  PubMed  CAS  Google Scholar 

  • Ziegler-Heitbrock HWL, Fingerle G, Ströbel M, Schraut W, Stelter F, Schütt C, Passlick B, Pforte A (1993) The novel subset of CD14 +/CD16+ blood monocytes exhibits features of tissue macrophages. Eur J Immunol 23:2053–2058

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Krebshilfe foundation (Az. 108868).

Conflict of interest

There are no conflicts of interest for Sebastian Scholl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Scholl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rommeley, M., Spies-Weisshart, B., Schilling, K. et al. Reconstitution and functional analyses of neutrophils and distinct subsets of monocytes after allogeneic stem cell transplantation. J Cancer Res Clin Oncol 137, 1293–1300 (2011). https://doi.org/10.1007/s00432-011-0989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-011-0989-x

Keywords

Navigation