Skip to main content

Advertisement

Log in

Methylated DAPK and APC promoter DNA detection in peripheral blood is significantly associated with apparent residual tumor and outcome

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Death-associated protein kinase (DAPK) and adenomatous polyposis coli gene (APC) have been recently shown to be associated with outcome in patients with esophageal carcinoma, especially adenocarcinoma. We wanted to validate the correlation of these two markers with outcome by detecting methylated DNA sequences in peripheral blood.

Methods

Circulating cell-free DNA extracted from blood plasma of 59 patients with esophageal cancer was analyzed before and after surgical resection by quantitative real-time methylation-specific RT-PCR (TaqMan™) assays.

Results

Thirty-six of 59 patients (61.0%) with esophageal cancer had detectable levels of methylated DAPK or APC promoter DNA and preoperative detection was significantly associated with an unfavorable prognosis as revealed by multivariate Cox proportional hazards regression analysis [Exp(b) = 4.578; P = 0.01]. The combination of both markers significantly increased sensitivity and specificity for discriminating between short (<2.5 years) and long survivors (P = 0.04, ROC curve analysis). Postoperative APC detection was significantly different if residual tumor was apparent (P = 0.03).

Conclusions

Preoperative measurement of methylated DAPK and APC promoter DNA in peripheral blood may contribute to better estimate postoperative survival chances of patients with esophageal carcinoma, especially adenocarcinoma. The postoperative detection of methylated APC in peripheral blood might provide crucial information on apparent residual tumor and might be used as a “molecular” R0-Marker in addition to the pathologic examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli gene

MGMT:

O 6-Methylguanine-DNA methyltransferase

DAPK:

Death-associated protein kinase

RT-PCR:

Real-time polymerase chain reaction

SCC:

Squamous cell carcinoma

AUC:

Area under the curve

References

  • Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174. doi:10.1016/S0168-9525(99)01971-X

    Article  PubMed  CAS  Google Scholar 

  • Bollschweiler E, Wolfgarten E, Gutschow C, Holscher AH (2001) Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer 92:549–555. doi:10.1002/1097-0142(20010801)92:3<549::AID-CNCR1354>3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W, Weisshaar B, Hoeveler A, Knebel D, Muller U, Dobrzanski P et al (1988) Promoter inhibition by DNA methylation: a reversible signal. Gene 74:129–133. doi:10.1016/0378-1119(88)90268-5

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159. doi:10.1056/NEJMra072067

    Article  PubMed  CAS  Google Scholar 

  • Heitmiller RF (2001) Epidemiology, diagnosis, and staging of esophageal cancer. Cancer Treat Res 105:375–386

    PubMed  CAS  Google Scholar 

  • Hoffmann AC, Warnecke-Eberz U, Luebke T, Prenzel K, Metzger R, Heitmann M et al (2007) Survivin mRNA in peripheral blood is frequently detected and significantly decreased following resection of gastrointestinal cancers. J Surg Oncol 95:51–54. doi:10.1002/jso.20630

    Article  PubMed  CAS  Google Scholar 

  • Holscher AH, Vallbohmer D (2007) Surgical treatment of esophageal tumors including local ablation. Zentralbl Chir 132:W18–W36 (quiz W37–W38). doi:10.1055/s-2007-960626

    Google Scholar 

  • Issa JP, Baylin SB, Herman JG (1997) DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia 11(Suppl 1):S7–S11

    PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96. doi:10.3322/CA.2007.0010

    Article  PubMed  Google Scholar 

  • Junginger T, Hermanek P, Oberholzer K, Schmidberger H (2006) Rectal carcinoma: is too much neoadjuvant therapy performed? Proposals for a more selective MRI based indication. Zentralbl Chir 131:275–284

    PubMed  Google Scholar 

  • Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ et al (2000) Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 92:1805–1811. doi:10.1093/jnci/92.22.1805

    Article  PubMed  CAS  Google Scholar 

  • Kuester D, Dar AA, Moskaluk CC, Krueger S, Meyer F, Hartig R et al (2007) Early involvement of death-associated protein kinase promoter hypermethylation in the carcinogenesis of Barrett’s esophageal adenocarcinoma and its association with clinical progression. Neoplasia 9:236–245. doi:10.1593/neo.06802

    Article  PubMed  CAS  Google Scholar 

  • Lordick F, Ott K, Novotny A, Schuhmacher C, Siewert JR (2007) R1 resection in the surgery of upper gastrointestinal tumors: relevance and therapeutic consequences. Chirurg 78:792–801. doi:10.1007/s00104-007-1381-x

    Article  PubMed  CAS  Google Scholar 

  • Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856. doi:10.1038/nrc1739

    Article  PubMed  CAS  Google Scholar 

  • Mathew G, Jamieson GG (1997) Neoadjuvant therapy for oesophageal cancer. Br J Surg 84:1185–1187. doi:10.1002/bjs.1800840902

    Article  PubMed  CAS  Google Scholar 

  • Moehler M, Schimanski CC, Gockel I, Junginger T, Galle PR (2004) (Neo)adjuvant strategies of advanced gastric carcinoma: time for a change? Dig Dis 22:345–350. doi:10.1159/000083597

    Article  PubMed  Google Scholar 

  • Reddy AN, Jiang WW, Kim M, Benoit N, Taylor R, Clinger J et al (2003) Death-associated protein kinase promoter hypermethylation in normal human lymphocytes. Cancer Res 63:7694–7698

    PubMed  CAS  Google Scholar 

  • Rohatgi PR, Swisher SG, Correa AM, Wu TT, Liao Z, Walsh GL et al (2005) Comparison of clinical stage, therapy response, and patient outcome between squamous cell carcinoma and adenocarcinoma of the esophagus. Int J Gastrointest Cancer 36:69–76. doi:10.1385/IJGC:36:2:69

    Article  PubMed  Google Scholar 

  • Sato F, Meltzer SJ (2006) CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer 106:483–493. doi:10.1002/cncr.21657

    Article  PubMed  CAS  Google Scholar 

  • Schildhaus HU, Krockel I, Lippert H, Malfertheiner P, Roessner A, Schneider-Stock R (2005) Promoter hypermethylation of p16INK4a, E-cadherin, O6-MGMT, DAPK and FHIT in adenocarcinomas of the esophagus, esophagogastric junction and proximal stomach. Int J Oncol 26:1493–1500

    PubMed  CAS  Google Scholar 

  • Schneider PM, Baldus SE, Metzger R, Kocher M, Bongartz R, Bollschweiler E et al (2005a) Histomorphologic tumor regression and lymph node metastases determine prognosis following neoadjuvant radiochemotherapy for esophageal cancer: implications for response classification. Ann Surg 242:684–692. doi:10.1097/01.sla.0000186170.38348.7b

    Article  PubMed  Google Scholar 

  • Schneider S, Uchida K, Brabender J, Baldus SE, Yochim J, Danenberg KD et al (2005b) Downregulation of TS, DPD, ERCC1, GST-Pi, EGFR, and HER2 gene expression after neoadjuvant three-modality treatment in patients with esophageal cancer. J Am Coll Surg 200:336–344. doi:10.1016/j.jamcollsurg.2004.10.035

    Article  PubMed  Google Scholar 

  • Siewert JR, Ott K (2007) Are squamous and adenocarcinomas of the esophagus the same disease? Semin Radiat Oncol 17:38–44. doi:10.1016/j.semradonc.2006.09.007

    Article  PubMed  Google Scholar 

  • Sobin LH, Fleming ID (1997) TNM classification of malignant tumors, fifth edition Union Internationale Contre le Cancer and the American Joint Committee on Cancer. Cancer 80:1803–1804. doi:10.1002/(SICI)1097-0142(19971101)80:9<1803::AID-CNCR16>3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  • Swisher SG, Holmes EC, Hunt KK, Doty JE, Zinner MJ, McFadden DW (1996) The role of neoadjuvant therapy in surgically resectable esophageal cancer. Arch Surg 131:819–824 discussion 824-5

    PubMed  CAS  Google Scholar 

  • Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M (2001) Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 19:305–313

    PubMed  CAS  Google Scholar 

  • Vallbohmer D, Lenz HJ (2006) Predictive and prognostic molecular markers in outcome of esophageal cancer. Dis Esophagus 19:425–432. doi:10.1111/j.1442-2050.2006.00622.x

    Article  PubMed  CAS  Google Scholar 

  • Vallbohmer D, Brabender J, Yang D, Schneider PM, Metzger R, Danenberg KD et al (2006) DNA methyltransferases messenger RNA expression and aberrant methylation of CpG islands in non-small-cell lung cancer: association and prognostic value. Clin Lung Cancer 8:39–44. doi:10.3816/CLC.2006.n.031

    Article  PubMed  CAS  Google Scholar 

  • Warnecke-Eberz U, Metzger R, Miyazono F, Baldus SE, Neiss S, Brabender J et al (2004) High specificity of quantitative excision repair cross-complementing 1 messenger RNA expression for prediction of minor histopathological response to neoadjuvant radiochemotherapy in esophageal cancer. Clin Cancer Res 10:3794–3799. doi:10.1158/1078-0432.CCR-03-0079

    Article  PubMed  CAS  Google Scholar 

  • Wong R, Malthaner R (2000) Esophageal cancer: a systematic review. Curr Probl Cancer 24:297–373. doi:10.1016/S0147-0272(00)80002-1

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas-Claudius Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, AC., Vallböhmer, D., Prenzel, K. et al. Methylated DAPK and APC promoter DNA detection in peripheral blood is significantly associated with apparent residual tumor and outcome. J Cancer Res Clin Oncol 135, 1231–1237 (2009). https://doi.org/10.1007/s00432-009-0564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-009-0564-x

Keywords

Navigation