Skip to main content

Advertisement

Log in

Allelic loss on chromosome 5q34 is associated with poor prognosis in hepatocellular carcinoma

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

To identify and characterize novel genetic alterations in hepatocellular carcinoma (HCC).

Methods

DNA was extracted from 29 HCC and corresponding normal tissues and amplified with 59 different 10-base arbitrary primers. A 550 bp DNA fragment amplified using primer Q-9 and which was present in 19 of 29 cases (66%) was cloned, sequenced, and compared with known nucleotide sequences deposited in Genome database, and quantified by real-time PCR.

Results

DNA alterations were found on chromosomes 5q34, 6p25.2 and 8q12.1 in 11 of 29 cases (38%), 7 of 29 cases (24%), and 12 of 29 cases (41%), respectively. Multivariate analysis showed that the allelic loss on chromosome 5q34 was an independent prognostic factor for poor survival of HCC patients, with the median survival time of 19 weeks for allelic loss versus 109 weeks for no allelic loss (= 0.001).

Conclusions

This study indicates that allelic loss on chromosome 5q34 may be involved in the development of HCC and could be used as a prognostic indicator in HCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achille A, Biasi MO, Zamboni G, Bogina G, Magalini AR, Pederzoli P, Perucho M, Scarpa A (1996) Chromosome 7q allelic losses in pancreatic carcinoma. Cancer Res 56:3808–3813

    PubMed  CAS  Google Scholar 

  • Badvie S (2000) Hepatocellular carcinoma. Postgrad Med J 76:4–11

    Article  PubMed  CAS  Google Scholar 

  • Buendia MA (2000) Genetics of hepatocellular carcinoma. Semin Cancer Biol 10:185–200

    Article  PubMed  CAS  Google Scholar 

  • Chariyalertsak S, Khuhaprema T, Bhudisawasdi V, Sripa B, Wongkham S, Petmitr S (2005) Novel DNA amplification on chromosomes 2p25.3 and 7q11.23 in cholangiocarcinoma identified by arbitrarily primed polymerase chain reaction. J Cancer Res Clin Oncol 131:821–828

    Article  PubMed  CAS  Google Scholar 

  • Chuensumran U, Wongkham S, Pairojkul C, Chauin S, Petmitr S (2007) Prognostic value of DNA alterations on chromosome 17p13.2 for intrahepatic cholangiocarcinoma. World J Gastroenterol 13:2986–2991

    PubMed  CAS  Google Scholar 

  • de Juan C, Iniesta P, Vega FJ, Peinado MA, Fernandez C, Caldés T, Massa MJ, López JA, Sánchez A, Torres AJ, Balibrea JL, Benito M (1998) Prognostic value of genomic damage in non-small-cell lung cancer. Br J Cancer 77:1971–1977

    PubMed  Google Scholar 

  • de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C (1998) Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 95:8847–8851

    Article  PubMed  Google Scholar 

  • De Souza AT, Hankins GR, Washington MK, Orton TC, Jirtle RL (1995) M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nat Genet 11:447–449

    Article  PubMed  Google Scholar 

  • Edmondson HA, Steiner PE (1954) Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer 7:462–503

    Article  PubMed  CAS  Google Scholar 

  • Elmileik H, Paterson AC, Kew MC (2005) Beta-catenin mutations and expression, 249serine p53 tumor suppressor gene mutation and hepatitis B virus infection in southern African Blacks with hepatocellular carcinoma. J Surg Oncol 91:258–263

    Article  PubMed  CAS  Google Scholar 

  • Faulkner SW, Leigh DA, Oosterhuis JW, Roelofs H, Looijenga LH, Friedlander ML (2000) Allelic losses in carcinoma in situ and testicular germ cell tumours of adolescents and adults: evidence suggestive of the linear progression model. Br J Cancer 83:729–736

    Article  PubMed  CAS  Google Scholar 

  • Fukai K, Yokosuka O, Imazeki F, Tada M, Mikata R, Miyazaki M, Ochiai T, Saisho H (2005) Methylation status of p14ARF, p15INK4b, and p16INK4a genes in human hepatocellular carcinoma. Liver Int 25:1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Hosoe S, Ueno K, Shigedo Y, Tachibana I, Osaki T, Kumagai T, Tanio Y, Kawase I, Nakamura Y, Kishimoto T (1994) A frequent deletion of chromosome 5q21 in advanced small cell and non-small cell carcinoma of the lung. Cancer Res 54:1787–1790

    PubMed  CAS  Google Scholar 

  • Hsu LS, Lee HC, Chau GY, Yin PH, Chi CW, Lui WY (2006) Aberrant methylation of EDNRB and p16 genes in hepatocellular carcinoma (HCC) in Taiwan. Oncol Rep 15:507–511

    PubMed  CAS  Google Scholar 

  • Johannsdottir HK, Jonsson G, Johannesdottir G, Agnarsson BA, Eerola H, Arason A, Heikkila P, Egilsson V, Olsson H, Johannsson OT, Nevanlinna H, Borg A, Barkardottir RB (2006) Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer 119:1052–1060

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K, Yasuda J, Shiraishi M, Kayama T, Doi K, Perucho M, Sekiya T (1998) Detection of DNA abnormalities by arbitrarily primed PCR fingerprinting: allelic losses in chromosome 10q in lung cancers. Biochem Biophys Res Commun 251:153–157

    Article  PubMed  CAS  Google Scholar 

  • Kohno T, Morishita K, Takano H, Shapiro DN, Yokota J (1994) Homozygous deletion at chromosome 2q33 in human small-cell lung carcinoma identified by arbitrarily primed PCR genomic fingerprinting. Oncogene 9:103–108

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Jikko A, Hiranuma H, Fuchihata H (1999) Analysis of genomic instability in squamous cell carcinoma of the head and neck using the random amplified polymorphic DNA method. Cancer Lett 26:183–188

    Article  Google Scholar 

  • Marchio A, Meddeb M, Pineau P, Danglot G, Tiollais P, Bernheim A, Dejean A (1997) Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer 18:59–65

    Article  PubMed  CAS  Google Scholar 

  • Mendes-da-Silva P, Moreira A, Duro-da-Costa J, Matias D, Monteiro C (2000) Frequent loss of heterozygosity on chromosome 5 in non-small cell lung carcinoma. Mol Pathol 53:184–187

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  • Murty VV, Reuter VE, Bosl GJ, Chaganti RS (1996) Deletion mapping identifies loss of heterozygosity at 5p15.1–15.2, 5q11 and 5q34–35 in human male germ cell tumors. Oncogene 12:2719–2723

    PubMed  CAS  Google Scholar 

  • Navarro JM, Jorcano JL (1999) The use of arbitrarily primed polymerase chain reaction in cancer research. Electrophoresis 20:283–290

    Article  PubMed  CAS  Google Scholar 

  • Nishida N, Fukuda Y, Kokuryu H, Toguchida J, Yandell DW, Ikenega M, Imura H, Ishizaki K (1993) Role and mutational heterogeneity of the p53 gene in hepatocellular carcinoma. Cancer Res 53:368–372

    PubMed  CAS  Google Scholar 

  • Nishida N, Fukuda Y, Komeda T, Kita R, Sando T, Furukawa M, Amenomori M, Shibagaki I, Nakao K, Ikenaga M, Ishizaki K (1994) Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma. Cancer Res 54:3107–3110

    PubMed  CAS  Google Scholar 

  • Pakeetoot T, Punyarit P, Petmitr S (2007) Novel DNA amplification on chromosome 6q23–24 and 4p15.2 in breast cancer identified by arbitrarily primed polymerase chain reaction. J Exp Clin Cancer Res 26:253–259

    PubMed  CAS  Google Scholar 

  • Parkin DM, Pisani P, Ferlay J (1999) Global cancer statistics. CA Cancer J Clin 49:33–64

    Article  PubMed  CAS  Google Scholar 

  • Peinado MA, Malkhosyan S, Velazquez A, Perucho M (1992) Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. Proc Natl Acad Sci U S A 89:10065–10069

    Article  PubMed  CAS  Google Scholar 

  • Pongstaporn W, Rochanawutanon M, Wilailak S, Linasamita V, Weerakiat S, Petmitr S (2006) Genetic alterations in chromosome 10q24.3 and glutathione S- transferase Omega 2 gene polymorphism in ovarian cancer. J Exp Clin Cancer Res 25:107–114

    PubMed  CAS  Google Scholar 

  • Sheu JC, Lin YW, Chou HC, Huang GT, Lee HS, Lin YH, Huang SY, Chen CH, Wang JT, Lee PH, Lin JT, Lu FJ, Chen DS (1999) Loss of heterozygosity and microsatellite instability in hepatocellular carcinoma in Taiwan. Br J Cancer 80:468–476

    Article  PubMed  CAS  Google Scholar 

  • Shin JH, Kang SM, Kim YS, Shin DH, Chang J, Kim SK, Kim SK (2005) Identification of tumor suppressor loci on the long arm of chromosome 5 in pulmonary large cell neuroendocrine carcinoma. Chest 128:2999–3003

    Article  PubMed  CAS  Google Scholar 

  • Singh KP, Roy D (2001) Identification of novel breast tumor-specific mutation(s) in the q11.2 region of chromosome 17 by RAPD/AP-PCR fingerprinting. Gene 269:33–43

    Article  PubMed  CAS  Google Scholar 

  • Tai AL, Yan WS, Fang Y, Xie D, Sham JS, Guan XY (2004) Recurrent chromosomal imbalances in nonsmall cell lung carcinoma: the association between 1q amplification and tumor recurrence. Cancer 100:1918–1927

    Article  PubMed  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Xian ZH, Cong WM, Zhang SH, Wu MC (2005) Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment. World J Gastroenterol 11:4102–4107

    PubMed  CAS  Google Scholar 

  • Yakicier MC, Irmak MB, Romano A, Kew M, Ozturk M (1999) Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Oncogene 18:4879–4883

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Xu HJ, Murakami Y, Sachse R, Yashima K, Hirohashi S, Hu SX, Benedict WF, Sekiya T (1994) Deletions of chromosome 13q, mutations in Retinoblastoma 1, and retinoblastoma protein state in human hepatocellular carcinoma. Cancer Res 54:4177–4182

    PubMed  CAS  Google Scholar 

  • Zhu GN, Zuo L, Zhou Q, Zhang SM, Zhu HQ, Gui SY, Wang Y (2004) Loss of heterozygosity on chromosome 10q22–10q23 and 22q11.2–22q12.1 and p53 gene in primary hepatocellular carcinoma. World J Gastroenterol 10:1975–1978

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Faculty of Tropical Medicine, Mahidol University, and the Fiscal Budget of the Thai Government. We thank Professor Prapon Wilairat and Mr. Paul Adams for reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Petmitr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saelee, P., Wongkham, S., Bhudhisawasdi, V. et al. Allelic loss on chromosome 5q34 is associated with poor prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 134, 1135–1141 (2008). https://doi.org/10.1007/s00432-008-0379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-008-0379-1

Keywords

Navigation