Skip to main content

Advertisement

Log in

ATM in oral carcinogenesis: association with clinicopathological features

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The ataxia telangiectasia mutated (ATM) gene plays a critical role in DNA damage response. Our aim here was to investigate the expression profile and loss of heterozygosity (LOH) of ATM, as well as their relationships to clinicopathological parameters in oral premalignant lesions (leukoplakia) and primary oral squamous cell carcinoma (OSCC).

Methods

Immunohistochemical assay and PCR were performed to detect the expression profile and LOH at D11S2179 of ATM. The association between clinicopathological parameters and the changes of ATM was statistically analyzed.

Results

ATM protein levels were higher in oral leukoplakia than those in normal controls, while the expressions of ATM protein had a versatile tendency in OSCC: 10 samples (31.25%) showed increased ATM protein levels than those observed in normal tissues, 12 samples (37.50%) had the same protein levels as the normal tissues, and 10 samples (31.25%) showed reduced or absent ATM levels. The patients with reduced/absent ATM expression had more poorly-differentiated situation as well as the tendency for lymph node metastasis. Most interestingly, 50% of these reduced cases were younger than 50 years old. PCR for LOH assay displayed that none of the samples from oral leukoplakia had abnormal changes in D11S2179, while three samples (9.38%) of OSCC showed loss of heterozygosity, and two samples (6.25%) with microsatellite instability.

Conclusions

These findings suggest that overexpression of ATM may be one of the early events in the carcinogenesis of OSCC. ATM might be a candidate biomarker for diagnosis and prognosis in OSCC, as well as a possible genetic marker for early-onset OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  • Ai L, Vo QN, Zuo C, Li L, Ling W, Suen JY, Hanna E, Brown KD, Fan CY (2004) Ataxia-telangiectasia-mutated (ATM) gene in head and neck squamous cell carcinoma: promoter hypermethylation with clinical correlation in 100 cases. Cancer Epidemiol Biomarkers Prev 13:150–156

    Article  PubMed  CAS  Google Scholar 

  • An Q, Liu Y, Gao Y, Huang J, Fong X, Liu L, Zhang D, Zhang J, Cheng S (2002) Deletion of tumor suppressor genes in Chinese non-small cell lung cancer. Cancer Lett 184:189–195

    Article  PubMed  CAS  Google Scholar 

  • Angèle S, Treilleux I, Tanière P, Martel-Planche G, Vuillaume M, Bailly C, Brémond A, Montesano R, Hall J (2000) Abnormal expression of the ATM and TP53 genes in sporadic breast carcinomas. Clin Cancer Res 6:3536–3544

    PubMed  Google Scholar 

  • Angèle S, Falconer A, Foster CS, Taniere P, Eeles RA, Hall J (2004) ATM protein overexpression in prostate tumors: possible role in telomere maintenance. Am J Clin Pathol 121:231–236

    Article  PubMed  CAS  Google Scholar 

  • Axell T, Pindborg JJ, Smith CJ, van der Waal I (1996) Oral white lesions with special reference to precancerous and tobacco-related lesions: conclusions of an international symposium held in Uppsala, Sweden, 18–21 May 1994. International Collaborative Group on Oral White Lesions. J Oral Pathol Med 25:49–54

    Article  PubMed  CAS  Google Scholar 

  • Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511:145–178

    Article  PubMed  CAS  Google Scholar 

  • Bolt J, Vo QN, Kim WJ, McWhorter AJ, Thomson J, Hagensee ME, Fiedlander P, Brown KD, Gilbert J (2005) The ATM/p53 pathway is commonly targeted for inactivation in squamous cell carcinoma of the head and neck (SCCHN) by multiple molecular mechanisms. Oral Oncol 41:1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Samaranayake LP, Zhou H, Xiao L (2000) Homozygous deletion of the PTEN tumor-suppressor gene is not a feature in oral squamous cell carcinoma. Oral Oncol 36:95–99

    Article  PubMed  CAS  Google Scholar 

  • Croner RS, Guenther K, Foertsch T, Siebenhaar R, Brueckl WM, Stremmel C, Hlubek F, Hohenberger W, Reingruber B (2004) Tissue preparation for gene expression profiling of colorectal carcinoma: three alternatives to laser microdissection with preamplification. J Lab Clin Med 143:344–351

    Article  PubMed  CAS  Google Scholar 

  • Curran S, Murray GI (2005) An introduction to laser-based tissue microdissection techniques. Methods Mol Biol 293:3–8

    PubMed  Google Scholar 

  • Eyfjord JE, Bodvarsdottir SK (2005) Genomic instability and cancer: networks involved in response to DNA damage. Mutat Res 592:18–28

    PubMed  CAS  Google Scholar 

  • Fiedler WG, Hoppe C, Schimmel B, Koscielny S, Dahse R, Bereczki Z, Claussen U, Ernst G, Ferdinad VE (2002) Molecular characterization of head and neck tumors by analysis of telomerase activity and a panel of microsatellite markers. Int J Mol Med 9:417–423

    PubMed  CAS  Google Scholar 

  • Friedlander PL (2001) Genomic instability in head and neck cancer patients. Head Neck 23:683–691

    Article  PubMed  CAS  Google Scholar 

  • Gasser S, Raulet D (2006) The DNA damage response, immunity and cancer. Semin Cancer Biol 16:344–347

    Article  PubMed  CAS  Google Scholar 

  • Grabsch H, Dattani M, Barker L, Maughan N, Maude K, Hansen O, Gabbert HE, Quirke P, Mueller W (2006) Expression of DNA double-strand break repair proteins ATM and BRCA1 predicts survival in colorectal cancer. Clin Cancer Res. 12:1494–1500

    Article  PubMed  CAS  Google Scholar 

  • Haidar MA, Kantarjian H, Manshouri T, Chang CY, O’Brien S, Freireich E, Keating M, Albitar M (2000) ATM gene deletion in patients with adult acute lymphoblastic leukemia. Cancer 88:1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hernandez S, Lloreta J (2006) Manual versus laser microdissection in molecular biology. Ultrastruct Pathol 30:221–228

    Article  PubMed  Google Scholar 

  • Jennifer LH, Sydney DF (2004) Microdissection techniques for molecular testing in surgical pathology. Arch Pathol Lab Med 128:1372–1378

    Google Scholar 

  • Jiang Y, Liang ZD, Wu TT, Cao L, Zhang H, Xu XC (2007) Ataxia-telangiectasia mutated expression is associated with tobacco smoke exposure in esophageal cancer tissues and benzo[a]pyrene diol epoxide in cell lines. Int J Cancer 120:91–95

    Article  PubMed  CAS  Google Scholar 

  • Kairouz R, Clarke RA, Marr PJ, Watters D, Lavin MF, Kearsley JH, Lee CS (1999) ATM protein synthesis patterns in sporadic breast cancer. Mol Pathol 52:252–256

    Article  PubMed  CAS  Google Scholar 

  • Koike M, Takeuchi S, Park S, Hatta Y, Yokota J, Tsuruoka N, Koeffler HP (1999) Ovarian cancer: loss of heterozygosity frequently occurs in the ATM gene, but structural alterations do not occur in this gene. Oncology 6:160–163

    Article  Google Scholar 

  • Lavin MF, Birrell G, Chen P, Kozlov S, Scott S, Gueven N (2005) ATM signaling and genomic stability in response to DNA damage. Mutat Res 569:123–132

    PubMed  CAS  Google Scholar 

  • Pause FG, Wacker P, Sappino AP (2004) ATM gene and lymphoid malignancies. Leukemia 18:238–242

    Article  CAS  Google Scholar 

  • Reichard KW, Joseph KT, Cohen M, Greager JA (1993) Squamous cell carcinoma of the tongue: experience with 86 consecutive cases. J Surg Oncol 54:239–242

    Article  PubMed  CAS  Google Scholar 

  • Shah JP, Johnson NW, Batsakis JG (2003) Oral cancer. Taylor & Francis, London

    Google Scholar 

  • van der Waal I, Axell T (2002) Oral leukoplakia: a proposal for uniform reporting. Oral Oncol 38(6):521–526

    Article  PubMed  Google Scholar 

  • Vo QN, Kim WJ, Cvitanociv L, Boudreau DA,Ginzinger DG, Brown KD (2004) The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene 23:9432–9437

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939

    PubMed  CAS  Google Scholar 

  • Xia J, Chen Q, Li B, Zeng X (2007) Amplifications of TAOS1 and EMS1 genes in oral carcinogenesis: association with clinicopathological features. Oral Oncol 43:508–514

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 30725041, 30672323, 30300387, 30471891), New Century Talents Support Program of MOE (NCET-04-0865), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20040610077), and Applied Basic Investigation Foundation of Sichuan (No. 035G022-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianming Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Chen, Q. & Li, B. ATM in oral carcinogenesis: association with clinicopathological features. J Cancer Res Clin Oncol 134, 1013–1020 (2008). https://doi.org/10.1007/s00432-008-0365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-008-0365-7

Keywords

Navigation