Skip to main content

Advertisement

Log in

A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The functional relationship between promoter hypermethylation and gene inactivation has been demonstrated for few genes only. We examined the promoter methylation status of two important tumor suppressor genes APAF-1 and DAPK-1 in bladder cancer as well as the mRNA expression pattern of these two genes for possible correlation between promoter hypermethylation and transcriptional repression.

Methods

The methylation status and mRNA expression levels were related to clinicopathological features in 34 patients with transitional cell carcinoma (TCC) of the bladder with a median clinical follow-up of more than 45 months. Tissue from ten patients with nonmalignant disease served as a control group. Quantitative real-time PCR-based detection methods were used for determination of the normalized index of methylation (NIM) as well as the mRNA expression level.

Results

APAF-1 and DAPK-1 methylation and mRNA expression was observed in all tumor and normal control samples investigated. Methylation (NIM) levels were significantly higher in tumor tissue for APAF-1 and DAPK-1, but median mRNA expression levels did not differ significantly comparing tumorous and non tumorous tissue. No correlation between expression levels of APAF-1 and DAPK-1 mRNA and tumor stage or grade was observed. However, in superficial TCC a strong correlation between higher NIM levels and lower mRNA expression of the APAF-1 gene was observed (P = 0.014).

Conclusions

Our results, although preliminary, provide first time in vivo expression analysis of the APAF-1 gene in bladder cancer specimen, suggesting expression control by promoter methylation in early stage tumor disease of the bladder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agathanggelou A, Honorio S, Macartney DP, Martinez A, Dallol A, Rader J, Fullwood P, Chauhan A, Walker R, Shaw JA, Hosoe S, Lerman MI, Minna JD, Maher ER, Latif F (2001) Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene 20:1509–1518

    Article  PubMed  CAS  Google Scholar 

  • Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, Sekido Y, Latif F, Milchgrub S, Toyooka S, Gazdar AF, Lerman MI, Zabarovsky E, White M, Minna JD (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93:691–699

    Article  PubMed  CAS  Google Scholar 

  • Christoph F, Weikert S, Kempkensteffen C, Krause H, Schostak M, Miller K, Schrader M (2006) Regularly methylated novel pro-apoptotic genes associated with recurrence in transitional cell carcinoma of the bladder. Int J Cancer 119:1396–1402

    Article  PubMed  CAS  Google Scholar 

  • Cohen O, Inbal B, Kissil JL, Raveh T, Berissi H, Spivak-Kroizaman T, Feinstein E, Kimchi A (1999) DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J Cell Biol 146:141–148

    PubMed  CAS  Google Scholar 

  • Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A (1995) Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 9:15–30

    PubMed  CAS  Google Scholar 

  • Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229

    PubMed  CAS  Google Scholar 

  • Fu WN, Bertoni F, Kelsey SM, McElwaine SM, Cotter FE, Newland AC, Jia L (2003) Role of DNA methylation in the suppression of Apaf-1 protein in human leukaemia. Oncogene 22:451–455

    Article  PubMed  CAS  Google Scholar 

  • Furukawa Y, Sutheesophon K, Wada T, Nishimura M, Saito Y, Ishii H (2005) Methylation silencing of the Apaf-1 gene in acute leukemia. Mol Cancer Res 3:325–334

    Article  PubMed  CAS  Google Scholar 

  • Helpap B, Schmitz-Drager BJ, Hamilton PW, Muzzonigro G, Galosi AB, Kurth KH, Lubaroff D, Waters DJ, Droller MJ (2003) Molecular pathology of non-invasive urothelial carcinomas (part I). Virchows Arch 442:309–316

    PubMed  CAS  Google Scholar 

  • Jeronimo C, Usadel H, Henrique R, Oliveira J, Lopes C, Nelson WG, Sidransky D (2001) Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst 93:1747–1752

    Article  PubMed  CAS  Google Scholar 

  • Jia L, Srinivasula SM, Liu FT, Newland AC, Fernandes-Alnemri T, Alnemri ES, Kelsey SM (2001) Apaf-1 protein deficiency confers resistance to cytochrome c-dependent apoptosis in human leukemic cells. Blood 98:414–421

    Article  PubMed  CAS  Google Scholar 

  • Jones PA (1999) The DNA methylation paradox. Trends Genet 15:34–37

    Article  PubMed  CAS  Google Scholar 

  • Karge WH, Schaefer EJ, Ordovas JM (1998) Quantification of mRNA by polymerase chain reaction (PCR) using an internal standard and a nonradioactive detection method. Methods Mol Biol 110:43–61

    PubMed  CAS  Google Scholar 

  • Kim DH, Nelson HH, Wiencke JK, Christiani DC, Wain JC, Mark EJ, Kelsey KT (2001) Promoter methylation of DAP-kinase: association with advanced stage in non-small cell lung cancer. Oncogene 20:1765–1770

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Kim HY, Byun DS, Lee SJ, Lee CH, Kim JI, Chang SG, Chi SG (2001) Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res 61:6688–6692

    PubMed  CAS  Google Scholar 

  • Lo KW, Kwong J, Hui AB, Chan SY, To KF, Chan AS, Chow LS, Teo PM, Johnson PJ, Huang DP (2001) High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res 61:3877–3881

    PubMed  CAS  Google Scholar 

  • Raveh T, Droguett G, Horwitz MS, DePinho RA, Kimchi A (2001) DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3:1–7

    Article  PubMed  CAS  Google Scholar 

  • Reu FJ, Leaman DW, Maitra RR, Bae SI, Cherkassky L, Fox MW, Rempinski DR, Beaulieu N, MacLeod AR, Borden EC (2006) Expression of RASSF1A, an epigenetically silenced tumor suppressor, overcomes resistance to apoptosis induction by interferons. Cancer Res 66:2785–2793

    Article  PubMed  CAS  Google Scholar 

  • rki (2004) Robert Koch Institut: Krebsinzidenz und Krebsmortalität 2000. http://www.rki.de/GBE/KREBS/KID2004

  • Satoh A, Toyota M, Itoh F, Kikuchi T, Obata T, Sasaki Y, Suzuki H, Yawata A, Kusano M, Fujita M, Hosokawa M, Yanagihara K, Tokino T, Imai K (2002) DNA methylation and histone deacetylation associated with silencing DAP kinase gene expression in colorectal and gastric cancers. Br J Cancer 86:1817–1823

    Article  PubMed  CAS  Google Scholar 

  • Sobin LH, Wittekind C (1997) TNM classification of malignant tumors, 5th edn. Wiley, New York

    Google Scholar 

  • Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, Cordon-Cardo C, Lowe SW (2001) Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409:207–211

    Article  PubMed  CAS  Google Scholar 

  • Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957

    Article  PubMed  CAS  Google Scholar 

  • Tada Y, Wada M, Taguchi K, Mochida Y, Kinugawa N, Tsuneyoshi M, Naito S, Kuwano M (2002) The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers. Cancer Res 62:4048–4053

    PubMed  CAS  Google Scholar 

  • Wethkamp N, Ramp U, Geddert H, Schulz WA, Florl AR, Suschek CV, Hassan M, Gabbert HE, Mahotka C (2006) Expression of death-associated protein kinase during tumour progression of human renal cell carcinomas: hypermethylation-independent mechanisms of inactivation. Eur J Cancer 42:264–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Waltraud Jekabsons and Ms. Antonia Maas for expert technical assistance and Dr. Joanne Weirowsi for her linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Christoph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christoph, F., Hinz, S., Kempkensteffen, C. et al. A gene expression profile of tumor suppressor genes commonly methylated in bladder cancer. J Cancer Res Clin Oncol 133, 343–349 (2007). https://doi.org/10.1007/s00432-006-0174-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-006-0174-9

Keywords

Navigation