Skip to main content

Advertisement

Log in

Dominant-negative E-cadherin inhibits the invasiveness of inflammatory breast cancer cells in vitro

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

E-cadherin is a transmembrane glycoprotein which mediates epithelial cell-to-cell adhesion function as a tumor suppressor and frequently loss of expression in a wide spectrum of human cancer. However, recent studies demonstrated that E-cadherin was always over-expressed in inflammatory breast cancer (IBC) specimen and cell lines, which is a clinical extreme malignancy of breast cancer. It is hypothesized that the gain and not the loss of the E-cadherin axis contributes to the IBC unique phenotype. To test this assumption, we generated dominant negative mutant E-cadherin high-expression inflammatory breast cancer cells by introduced dominant negative mutant E-cadherin (H-2kd-E-cad) cDNA into human IBC SUM149 cells. Our studies demonstrated that the ability of invasion of SUM149 cells was significantly inhibited by H-2kd-E-cad via down-regulation of MMP-1 and MMP-9 expression. The underlying signal pathway of MAPK phosphorylated Erk 1/2(P44/42) in H-2kd-E-cad-transfected SUM149 cells was significantly down-regulated compared to parental and mock contrast. Our studies provided further functional evidence as the gain of E-cadherin expression dedicated to the IBC malignant phenotype and the blockage of MAPK/Erk activation maybe a promising therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albini A (1998) Tumor, endothelial cell invasion of basement membranes. The matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathol Oncol Res 4:230–241

    Article  CAS  PubMed  Google Scholar 

  • Alpaugh ML, Tomlinson JS, Shao ZM, Barsky SH (1999) A novel human xenograft model of inflammatory breast cancer. Cancer Res 59:5079–5084

    CAS  PubMed  Google Scholar 

  • Amagai M, Fujimori T, Masunaga T, Shimizu H, Nishikawa T, Shimizu N et al (1995) Delayed assembly of desmosomes in keratinocytes with disrupted classic-cadherin-mediated cell adhesion by a dominant negative mutant. J Invest Dermatol 104:27–32

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier W, Behrens J (1994) Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198:11–26

    CAS  PubMed  Google Scholar 

  • Braga VM (2002) Cell–cell adhesion and signalling. Curr Opin Cell Biol. 14:546–556

    Article  CAS  PubMed  Google Scholar 

  • Bussemakers MJ, Van Bokhoven A, Tomita K, Jansen CF, Schalken JA (2000) Complex cadherin expression in human prostate cancer cells. Int J Cancer 85:446–450

    Article  CAS  PubMed  Google Scholar 

  • Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Werb Z (2001) The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 11:S37–43

    CAS  PubMed  Google Scholar 

  • Christofori G, Semb H (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24:73–76

    Article  CAS  PubMed  Google Scholar 

  • Curran S, Murray GI (1999) Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189:300–308

    Article  CAS  PubMed  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  • Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A et al (1991) E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113:173–185

    Article  CAS  PubMed  Google Scholar 

  • Fukata M, Kaibuchi K (2001) Rho-family GTPases in cadherin-mediated cell–cell adhesion. Nat Rev Mol Cell Biol 2:887–897

    Article  CAS  PubMed  Google Scholar 

  • Giroldi LA, Bringuier PP, Shimazui T, Jansen K, Schalken JA (1999) Changes in cadherin–catenin complexes in the progression of human bladder carcinoma. Int J Cancer 82:70–76

    Article  CAS  PubMed  Google Scholar 

  • Hunt NC, Douglas-Jones AG, Jasani B, Morgan JM, Pignatelli M (1997) Loss of E-cadherin expression associated with lymph node metastases in small breast carcinomas. Virchows Arch 430:285–289

    Article  CAS  PubMed  Google Scholar 

  • Islam S, Carey TE, Wolf GT, Wheelock MJ, Johnson KR (1996) Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell–cell adhesion. J Cell Biol. 135:1643–1654

    Article  CAS  PubMed  Google Scholar 

  • Kleer CG, van Golen KL, Braun T, Merajver SD (2001) Persistent E-cadherin expression in inflammatory breast cancer. Mod Pathol 14:458–464

    Article  CAS  PubMed  Google Scholar 

  • Levine E, Lee CH, Kintner C, Gumbiner BM (1994) Selective disruption of E-cadherin function in early xenopus embryos by a dominant negative mutant. Development 120:901–909

    CAS  PubMed  Google Scholar 

  • Nawrocki B, Polette M, Marchand V, Monteau M, Gillery P, Tournier JM et al (1997) Expression of matrix metalloproteinases and their inhibitors in human bronchopulmonary carcinomas: quantificative and morphological analyses. Int J Cancer 72:556–564

    Article  CAS  PubMed  Google Scholar 

  • Ozawa M, Ringwald M, Kemler R (1990) Uvomorulin–catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci USA 87:4246–450

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Lee MJ, Ahn J, Kim S, Kim HH, Kim KH et al (2004) Heat shock-induced matrix metalloproteinase (MMP)-1 and MMP-3 are mediated through ERK and JNK activation and via an autocrine interleukin-6 loop. J Invest Dermatol 123:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Pishvaian MJ, Feltes CM, Thompson P, Bussemakers MJ, Schalken JA, Byers SW (1999) Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res 59:947–952

    CAS  PubMed  Google Scholar 

  • Shao ZM, Nguyen M, Alpaugh ML, O’Connell JT, Barsky SH (1998) The human myoepithelial cell exerts antiproliferative effects on breast carcinoma cells characterized by p21WAF1/CIP1 induction, G2/M arrest, and apoptosis. Exp Cell Res 241:394–403

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Ochiai A, Gotoh M, Machinami R, Hirohashi S (1996) Simultaneous expression of cadherin-11 in signet-ring cell carcinoma and stromal cells of diffuse-type gastric cancer. Cancer Lett 99:147–153

    Article  CAS  PubMed  Google Scholar 

  • Siitonen SM, Kononen JT, Helin HJ, Rantala IS, Holli KA, Isola JJ (1996) Reduced E-cadherin expression is associated with invasiveness and unfavorable prognosis in breast cancer. Am J Clin Pathol 105:394–402

    CAS  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  Google Scholar 

  • Takeichi M (1993) Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol 5:806–811

    Article  CAS  PubMed  Google Scholar 

  • Takeichi M (1988) The cadherins: cell–cell adhesion molecules controlling animal morphogenesis. Development 102:639–655

    CAS  PubMed  Google Scholar 

  • Tlsty TD (1998) Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr Opin Cell Biol 10:647–653

    Article  CAS  PubMed  Google Scholar 

  • Tomita K, van Bokhoven A, van Leenders GJ, Ruijter ET, Jansen CF, Bussemakers MJ, Schalken JA (2000) Cadherin switching in human prostate cancer progression. Cancer Res 60:3650–3654

    CAS  PubMed  Google Scholar 

  • Tomlinson JS, Alpaugh ML, Barsky SH (2001) An intact overexpressed E-cadherin/alpha,beta–catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res 61:5231–5241

    CAS  PubMed  Google Scholar 

  • van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H et al (1999) A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res. 5:2511–219

    PubMed  Google Scholar 

  • Vizirianakis IS, Chen YQ, Kantak SS, Tsiftsoglou AS, Kramer RH (2002) Dominant-negative E-cadherin alters adhesion and reverses contact inhibition of growth in breast carcinoma cells. Int J Oncol 21:135–144

    CAS  PubMed  Google Scholar 

  • Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F (1991) Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66:107–119

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Xiong S, Klos K, Nguyen N, Grijalva R, Li P et al (2001) Multiple signaling pathways involved in activation of matrix metalloproteinase-9 (MMP-9) by heregulin-beta1 in human breast cancer cells. Oncogene 20:8066–8074

    Article  CAS  PubMed  Google Scholar 

  • Yap AS (1998) The morphogenetic role of cadherin cell adhesion molecules in human cancer: a thematic review. Cancer Invest 16:252–261

    CAS  PubMed  Google Scholar 

  • Zhu AJ, Watt FM (1996) Expression of a dominant negative cadherin mutant inhibits proliferation and stimulates terminal differentiation of human epidermal keratinocytes. J Cell Sci 109(Pt 13):3013–3023

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ioannis S. Vizirianakis and Professor Stephen P. Ethier for the plasmid pcDNA3.1(-)Myc/His and the SUM149 cell line This research was supported in part by grants from the Outstanding Young Investigator Award of National Natural Science Foundation of China (No. 30025015), National Natural Science Foundation of China (30371580) and National Key Project of China (No. 2001BA703BO5), and the Grant from Shanghai Science and Technology Committee (03J14019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ming Shao.

Additional information

Hui-Ming Dong and Gang Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, HM., Liu, G., Hou, YF. et al. Dominant-negative E-cadherin inhibits the invasiveness of inflammatory breast cancer cells in vitro. J Cancer Res Clin Oncol 133, 83–92 (2007). https://doi.org/10.1007/s00432-006-0140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-006-0140-6

Keywords

Navigation