Skip to main content

Advertisement

Log in

Induction of tumor immunity and cytotoxic t lymphocyte responses using dendritic cells transduced by adenoviral vectors encoding HBsAg: comparison to protein immunization

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Dendritic cells (DC) are specialized antigen-presenting cells with powerful immunostimulatory properties. Their use for induction of anti-tumor immunity has been limited by several factors, including identification of appropriate tumor-associated antigens, delivery of antigens to DC, and maintaining DC in a highly activated state. Here, DC propagated in vitro were transduced with an adenoviral (Ad) vector to express hepatitis B surface antigen (HBsAg), an antigen present in hepatocellular carcinoma (HCC). Many patients with HCC demonstrate evidence of prior HBV exposure, suggesting that the presence of the virus in a quiescent state may promote tumorigenesis. Ad-HBsAg-transduced DC stimulated strong cytotoxic T lymphocyte (CTL) responses to HBsAg-expressing tumor cells, and protected mice from lethal tumor challenge. Immunity was antigen-specific, as wild-type tumor (HBsAg -) grew normally. Furthermore, DC transduced with an irrelevant vector had no effect. Vaccination with HBsAg protein, a clinically utilized preparation that confers immunity to HBV infection, did not protect against tumor challenge even though it induced a strong antibody response. These studies describe for the first time the contributions of humoral and cellular immune responses to tumor immunity induced by Ad-transduced DC compared to protein vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 A
Fig. 2
Fig. 3
A
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang RF, Rosenberg SA (1996) Human tumor antigens recognized by T lymphocytes: implications for cancer therapy. J Leukoc Biol 60:296–309

    CAS  PubMed  Google Scholar 

  2. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    Article  CAS  PubMed  Google Scholar 

  3. Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, et al (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1:1297–1302

    Article  CAS  PubMed  Google Scholar 

  4. Gilboa E, Nair SK, Lyerly HK (1998) Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 46:82–87

    Article  CAS  PubMed  Google Scholar 

  5. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, et al (1996) Vaccination of patients with B-cell lymphoma using autologous antigen- pulsed dendritic cells. Nat Med 2:52–58

    Article  CAS  PubMed  Google Scholar 

  6. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332

    CAS  PubMed  Google Scholar 

  7. Dhodapkar MV, Young JW, Chapman PB, Cox WI, Fonteneau JF, Amigorena S, et al (2000) Paucity of functional T-cell memory to melanoma antigens in healthy donors and melanoma patients. Clin Cancer Res 6:4831–4838

    Google Scholar 

  8. Kanto T, Hayashi N, Takehara T, Tatsumi T, Kuzushita N, Ito A, et al (1999) Impaired allostimulatory capacity of peripheral blood dendritic cells recovered from hepatitis C virus-infected individuals. J Immunol 162:5584–5591

    Google Scholar 

  9. Grosjean I, Caux C, Bella C, Berger I, Wild F, Banchereau J, et al (1997) Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 186:801–812

    Article  CAS  PubMed  Google Scholar 

  10. Fugier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan MC, Liu YJ, Rabourdin-Combe C (1997) Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186:813–823

    Article  CAS  PubMed  Google Scholar 

  11. El-Serag HB, Mason AC (1999) Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 340:745–750

    Article  CAS  PubMed  Google Scholar 

  12. Parkin DM, Stjernsward J, Muir CS (1984) Estimates of the worldwide frequency of twelve major cancers. Bull World Health Organ 62:163–182

    CAS  PubMed  Google Scholar 

  13. Chisari FV, Ferrari C (1995) Hepatitis B virus immunopathogenesis. Annu Rev Immunol 13:29–60

    Article  CAS  PubMed  Google Scholar 

  14. Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV (1998) Immune pathogenesis of hepatocellular carcinoma. J Exp Med 188:341–350

    Article  CAS  PubMed  Google Scholar 

  15. Morelli AE, Larregina AT, Ganster RW, Zahorchak AF, Plowey JM, Takayama T, et al (2000) Recombinant adenovirus induces maturation of dendritic cells via an NF- kappaB-dependent pathway. J Virol 74:9617–9628

    Article  CAS  PubMed  Google Scholar 

  16. Thomson AW, Lu L, Subbotin VM, Li Y, Qian S, Rao AS, et al (1995) In vitro propagation and homing of liver-derived dendritic cell progenitors to lymphoid tissues of allogeneic recipients. Implications for the establishment and maintenance of donor cell chimerism following liver transplantation. Transplantation 59:544–551

    Google Scholar 

  17. Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 186:1177–1182

    Article  CAS  PubMed  Google Scholar 

  18. Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465–472

    Article  CAS  PubMed  Google Scholar 

  19. Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, et al (2000) Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci USA 97:2715–2718

    Google Scholar 

  20. Heiser A, Dahm P, Yancey DR, Maurice MA, Boczkowski D, Nair SK, et al (2000) Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol 164:5508–5514

    Google Scholar 

  21. Kaplan JM, Yu Q, Piraino ST, Pennington SE, Shankara S, Woodworth LA, et al (1999) Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. J Immunol 163:699–707

    Google Scholar 

  22. Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J (2000) Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J Immunol 165:5713–5719

    Google Scholar 

  23. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16:364–369

    Google Scholar 

  24. Ranieri E, Kierstead LS, Zarour H, Kirkwood JM, Lotze MT, Whiteside T, et al (2000) Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Invest 29:121–125

    Google Scholar 

  25. Zheng LM, Ojcius DM, Garaud F, Roth C, Maxwell E, Li Z, et al (1996) Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J Exp Med 184:579–584

    Article  CAS  PubMed  Google Scholar 

  26. Takayama T, Tahara H, Thomson AW (2001) Differential effects of myeloid dendritic cells retrovirally transduced to express mammalian or viral interleukin-10 on cytotoxic T lymphocyte and natural killer cell functions and resistance to tumor growth. Transplantation 71:1334–1340

    Google Scholar 

  27. Chen WF, Zlotnik A (1991) IL-10: a novel cytotoxic T cell differentiation factor. J Immunol 147:528–534

    Google Scholar 

  28. Groux H, Cottrez F, Rouleau M, Mauze S, Antonenko S, Hurst S, et al (1999) A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J Immunol 162:1723–1729

    Google Scholar 

  29. Berman RM, Suzuki T, Tahara H, Robbins PD, Narula SK, Lotze MT (1996) Systemic administration of cellular IL-10 induces an effective, specific, and long-lived immune response against established tumors in mice. J Immunol 157:231–238

    Google Scholar 

  30. Fujii S, Shimizu K, Shimizu T, Lotze M (2001) Interleukin-10 promotes the maintenance of antitumor CD8(+) T cell effector function in situ. Blood 98:2143–2151

    Article  CAS  PubMed  Google Scholar 

  31. Carson WE, Lindemann MJ, Baiocchi R, Linett M, Tan JC, Chou CC, et al (1995) The functional characterization of interleukin-10 receptor expression on human natural killer cells. Blood 85:3577–3585

    CAS  PubMed  Google Scholar 

  32. Giannoukakis N, Thomson A, Robbins P (1999) Gene therapy in transplantation. Gene Ther 6:1499–1511

    Article  CAS  PubMed  Google Scholar 

  33. Giannoukakis N, Bonham CA, Qian S, Chen Z, Peng L, Harnaha J, et al (2000) Prolongation of cardiac allograft survival using dendritic cells treated with NF-kB decoy oligodeoxyribonucleotides. Mol Ther 1:430–437

    Article  CAS  PubMed  Google Scholar 

  34. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95:2509–2514

    Google Scholar 

  35. Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72:2224–2232

    CAS  PubMed  Google Scholar 

  36. Lu L, Gambotto A, Lee WC, Qian S, Bonham CA, Robbins PD, et al (1999) Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients. Gene Ther 6:554–563

    Article  CAS  PubMed  Google Scholar 

  37. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702

    Article  CAS  PubMed  Google Scholar 

  38. Lu L, Woo J, Rao AS, Li Y, Watkins SC, Qian S, et al (1994) Propagation of dendritic cell progenitors from normal mouse liver using granulocyte/macrophage colony-stimulating factor and their maturational development in the presence of type-1 collagen. J Exp Med 179:1823–1834

    Article  CAS  PubMed  Google Scholar 

  39. Lu L, Rudert WA, Qian S, McCaslin D, Fu F, Rao AS, et al (1995) Growth of donor-derived dendritic cells from the bone marrow of murine liver allograft recipients in response to granulocyte/macrophage colony- stimulating factor. J Exp Med 182:379–387

    Article  CAS  PubMed  Google Scholar 

  40. Lu L, Bonham CA, Chambers FG, Watkins SC, Hoffman RA, Simmons RL, et al (1996) Induction of nitric oxide synthase in mouse dendritic cells by IFN- gamma, endotoxin, and interaction with allogeneic T cells: nitric oxide production is associated with dendritic cell apoptosis. J Immunol 157:3577–3586

    Google Scholar 

  41. Lee WC, Wan YH, Li W, Fu F, Sime PJ, Gauldie J, et al (1999) Enhancement of dendritic cell tolerogenicity by genetic modification using adenoviral vectors encoding cDNA for TGF beta 1. Transplant Proc 31:1195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Simeon M. Jones, Jr. and Katherine Reed Jones Fund, the Benjamin H. and Portia T. Hosler Fund, and the Walter P. Morrison, Jr. Family Fund administered through The Pittsburgh Foundation and in part by grant from NSFC (30200268)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Andrew Bonham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, SJ., Lu, L., Qiao, C. et al. Induction of tumor immunity and cytotoxic t lymphocyte responses using dendritic cells transduced by adenoviral vectors encoding HBsAg: comparison to protein immunization. J Cancer Res Clin Oncol 131, 429–438 (2005). https://doi.org/10.1007/s00432-004-0616-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-004-0616-1

Keywords

Navigation