Skip to main content

Advertisement

Log in

Saccharic acid 1.4-lactone protects against CPT-11-induced mucosa damage in rats

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the ability of D-saccharic acid 1.4-lactone (SAL), a β-glucuronidase inhibitor, to prevent irinotecan hydrochloride (CPT-11) from inducing mucosal damage as a cause of diarrhea in rats.

Methods

Wistar rats were divided into six groups of three animals each, administered 1.0 ml isotonic solution intraperitoneally once daily for up to three consecutive days, respectively for up to six days. The series were as follows: (1) On days 1–3: saline; (2). On days 1–3: 200 mg CPT-11/m2; (3) On days −3 to −1 relative to the first administration of CPT-11: 10 mg/ml SAL; on days 1–3: 200 mg CPT-11/m2; (4) On days −3 to +3 relative to the first administration of CPT-11: 10 mg/ml SAL, and on days 1–3:additional 200 mg CPT-11/m2; (5)On days 1–3: 200 mg CPT-11/m2 (0.5 ml) + 10 mg/0.5 ml SAL; (6) On days −3 to −1 relative to the first administration of CPT-11: 3 mg/ml SAL, and on days 1–3: 200 mg CPT-11/m2. Luminal mucosa damage of the small intestine was detected by histology 24 h after the last intraperitoneal application. Peptidase activities of the proximal jejunum were measured by using an in situ perfusion model.

Results

Following intraperitoneal CPT-11 treatment, using conventional histology of paraffin sections, we observed severe mucosal damage. This was reflected by a decrease of the villi/crypt ratio, an increase of apoptotic cells, as well as an increase of mitotic figures in the crypt region. There was a concomitant increased lymphatic infiltration in mucosa of CPT-11 treated rats. This damage pattern could be clearly reduced by co-treatment with the β-glucuronidase inhibitor, SAL, independent of the treatment schedule. In contrast to our expectations based on previous reports, the intraperitoneal application of CPT-11 alone or in combination with SAL did not cause significant differences in luminal enzyme liberation in comparison with controls in the in situ perfusion assay.

Conclusions

The β-glucuronidase inhibitor SAL is able to significantly reduce CPT-11-induced mucosal damage in the small intestine of rats. This observation might soon have a clinical impact for the treatment of patients with CPT-11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2

Similar content being viewed by others

References

  • Abigerges D, Armand JP, Chabot GG, Da Costa L, Fadel E, Cote C, Herait P, Gandia (1994) Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. J Natl Cancer Inst 86:446–449

    CAS  PubMed  Google Scholar 

  • Ajani JA, Baker J, Pisters PW, Ho L, Mansfield PF, Feig BW, Charnsangavej C (2002) CPT-11 plus cisplatin in patients with advanced, untreated gastric or gastroesophageal junction carcinoma: results of a phase II study. Cancer 94:641–646

    Article  PubMed  Google Scholar 

  • Ando Y, Ueoka H, Sugiyama T, Ichiki M, Shimokata K, Hasegawa Y (2002) Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Ther Drug Monit 24:111–116

    Article  CAS  PubMed  Google Scholar 

  • Araki E, Ishikawa M, Iigo M, Koide T, Itabashi M, Hoshi A (1993) Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11. Jpn J Cancer Res 84:697–702

    CAS  PubMed  Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    CAS  Google Scholar 

  • Bleiberg H, Cvitkovic E (1996) Characterisation and clinical management of CPT-11 (irinotecan)-induced adverse events: the European perspective. Eur J Cancer 32A [Suppl 3]:S18-S23

  • Brunelle FM, Verbeeck RK (1997) Conjugation-deconjugation cycling of diflunisal via β-glucuronidase catalyzed hydrolysis of its acyl glucuronide in the rat. Life Sci 60:2013–2021

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Black JD, Troutt AB, Rustum YM (1998) Interleukin 15 offers selective protection from irinotecan-induced intestinal toxicity in a preclinical animal model. Cancer Res 58:3270–3274

    CAS  PubMed  Google Scholar 

  • Fittkau M, Gerlach R, Schmoll HJ (2001a) Protective effect of oral phosphatidylcholine on radiation-induced release of intestinal peptidases in rats. J Cancer Res Clin Oncol 127:444–448

    Article  CAS  PubMed  Google Scholar 

  • Fittkau M, Grothey A, Gerlach R, Schmoll HJ (2001b) A low dose of ionizing radiation increases luminal release of intestinal peptidases in rats. J Cancer Res Clin Oncol 127:96–100

    Article  CAS  PubMed  Google Scholar 

  • Fittkau M, Gerlach R, Schmoll HJ (2002) Phosphatidylcholine does not protect rats against 5-fluorouracil/folinic acid-induced damage of the intestinal luminal mucosa. J Cancer Res Clin Oncol 128:80–84

    Article  CAS  PubMed  Google Scholar 

  • Gandia D, Abigerges D, Armand JP, Chabot G, Da Costa L, De Forni M, Mathieu-Boue A, Herait P (1993) CPT-11-induced cholinergic effects in cancer patients. J Clin Oncol 11:196–197

    CAS  PubMed  Google Scholar 

  • Gerrits CJ, de Jonge MJ, Schellens JH, Stoter G, Verweij J (1997) Topoisomerase I inhibitors: the relevance of prolonged exposure for present clinical development. Br J Cancer 76:952–962

    PubMed  Google Scholar 

  • Glässer D, Kleine R (1962) Beitrag zur Eiweissbestimmung in stark verdünnten Lösungen. Pharm 17:32–36

    Google Scholar 

  • Gupta E, Mick R, Ramirez J, Wang X, Lestingi TM, Vokes EE, Ratain MJ (1997) Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J Clin Oncol 15:1502–1510

    CAS  PubMed  Google Scholar 

  • Hecht JR (1998) Gastrointestinal toxicity of irinotecan. Oncology (Huntingt) 12 [8 Suppl 6]:72–78

  • Ikegami T, Ha L, Arimori K, Latham P, Kobayashi K, Ceryak S, Matsuzaki Y, Bouscarel B (2002) Intestinal alkalization as a possible preventive mechanism in irinotecan (CPT-11)-induced diarrhea. Cancer Res 62:179–187

    CAS  PubMed  Google Scholar 

  • Ikuno N, Soda H, Watanabe M, Oka M (1995) Irinotecan (CPT-11) and characteristic mucosal changes in the mouse ileum and cecum. J Natl Cancer Inst 87:1876–1883

    Google Scholar 

  • Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, Coffman BL, Ratain MJ (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11) Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101:847–854

    PubMed  Google Scholar 

  • Kaneda N, Nagata H, Furuta T, Yokokura T (1990) Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. Cancer Res 50:1715–1720

    PubMed  Google Scholar 

  • Kaneda N, Kurita A, Hosokawa Y, Yokokura T, Awazu S (1997) Intravenous administration of irinotecan elevates the blood β-glucuronidase activity in rats. Cancer Res 57:5305–308

    CAS  PubMed  Google Scholar 

  • Kase Y, Hayakawa T, Togashi Y, Kamataki T (1997) Relevance of irinotecan hydrochloride-induced diarrhea to the level of prostaglandin E2 and water absorption of large intestine in rats. Jpn J Pharmacol 75:399–405

    CAS  PubMed  Google Scholar 

  • Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K (1991) Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res 51:4187–191

    PubMed  Google Scholar 

  • Kehrer DF, Sparreboom A, Verweij J, de Bruijn P, Nierop CA, van de Schraaf J, Ruijgrok EJ, de Jonge MJ (2001) Modulation of irinotecan-induced diarrhea by cotreatment with neomycin in cancer patients. Clin Cancer Res 7:1136–1141

    CAS  PubMed  Google Scholar 

  • Küllertz G, Boigk J (1986) Dipeptidylpeptidase IV-Aktivität in Serum und Synovia bei Patienten mit rheumatoider Arthritis. Z Rheumatol 45:52–6

    PubMed  Google Scholar 

  • Lavrenkov K, Man S, Mermershtain W, Cohen Y (2002) Retrospective comparison of single-agent chemotherapy with weekly 5-fluorouracil or weekly irinotecan in previously treated patients with metastatic colorectal cancer. J Chemother 14:84–87

    CAS  PubMed  Google Scholar 

  • Minagawa Y, Kigawa J, Itamochi H, Terakawa N (2001) The role of topoisomerase I inhibitor in cisplatin-resistant ovarian cancer. Hum Cell 14:237–243

    CAS  PubMed  Google Scholar 

  • Mori K, Kondo T, Kamiyama Y, Kano Y, Tominaga K (2003) Preventive effect of Kampo medicine (Hangeshashin-to) against irinotecan-induced diarrhea in advanced non-small-cell lung cancer. Cancer Chemother Pharmacol 51:403–406

    CAS  PubMed  Google Scholar 

  • Narita M, Nagai E, Hagiwara H, Aburada M, Yokoi T, Kamataki T (1993) Inhibition of β-glucuronidase by natural glucuronides of kampo medicines using glucuronide of SN-38 (7-ethyl-10-hydroxycamptothecin) as a substrate. Xenobiotica 23:5–10

    CAS  PubMed  Google Scholar 

  • Okamoto R, Takano H, Okamura T, Park JS, Tanimoto K, Sekikawa T, Yamamoto W, Sparreboom A, Verweij J, Nishiyama M (2002) O(6)-methylguanine-DNA methyltransferase (MGMT) as a determinant of resistance to camptothecin derivatives. Jpn J Cancer Res 93:93–102

    CAS  PubMed  Google Scholar 

  • Pham-Huy C, Sahui-Gnassi A, Saada V, Gramond JP, Galons H, Ellouk-Achard S, Levresse V, Fompeydie D, Claude JR (1994) Microassay of propranolol enantiomers and conjugates in human plasma and urine by high-performance liquid chromatography after chiral derivatization for pharmacokinetic study. J Pharm Biomed Anal 12:1189–1198

    Article  CAS  PubMed  Google Scholar 

  • Potten CS, Wilson JW, Booth C (1997) Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells 15:82–93

    CAS  PubMed  Google Scholar 

  • Pro B, Lozano R, Ajani JA (2001) Therapeutic response to octreotide in patients with refractory CPT-11 induced diarrhea. Invest New Drugs 19:341–343

    Article  CAS  PubMed  Google Scholar 

  • Ratain MJ (2002) Irinotecan Dosing: Does the CPT in CPT-11 stand for “Can’t predict toxicity”? J Clin Oncol 20:7–8

    PubMed  Google Scholar 

  • Rivory LP, Bowles MR, Robert J, Pond SM (1996) Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem Pharmacol 52:1103–1111

    CAS  PubMed  Google Scholar 

  • Rothenberg ML, Kuhn JG, Burris HA 3rd, Nelson J, Eckardt JR, Tristan-Morales M, Hilsenbeck SG, Weiss GR, Smith LS, Rodriguez GI et al (1993) Phase I and pharmacokinetic trial of weekly CPT-11. J Clin Oncol 11:2194–2204

    CAS  PubMed  Google Scholar 

  • Sato M, Ando M, Minami H, Ando Y, Ando M, Yamamoto M, Sakai S, Watanabe A, Ikeda T, Sekido Y, Saka H, Shimokata K, Hasegawa Y (2001) Phase I/II and pharmacologic study of irinotecan and carboplatin for patients with lung cancer. Cancer Chemother Pharmacol 48:481–487

    Article  CAS  PubMed  Google Scholar 

  • Shinohara H, Killion JJ, Kuniyasu H, Kumar R, Fidler IJ (1998) Prevention of intestinal toxic effects and intensification of irinotecan’s therapeutic efficacy against murine colon cancer liver metastases by oral administration of the lipopeptide JBT 3002. Clin Cancer Res 4:2053–2063

    CAS  PubMed  Google Scholar 

  • Shinohara H, Killion JJ, Bucana CD, Yano S, Fidler IJ (1999) Oral administration of the immunomodulator JBT-3002 induces endogenous interleukin 15 in intestinal macrophages for protection against irinotecan-mediated destruction of intestinal epithelium. Clin Cancer Res 5:2148–2156

    CAS  PubMed  Google Scholar 

  • Stemmler J, Weise A, Hacker U, Heinemann V, Schalhorn A (2002) Weekly irinotecan in a patient with metastatic colorectal cancer on hemodialysis due to chronic renal failure. Onkologie 25:60–63

    Article  CAS  PubMed  Google Scholar 

  • Takasuna K, Kasai Y, Kitano Y, Mori K, Kobayashi R, Hagiwara T, Kakihata K, Hirohashi M, Nomura M, Nagai E, Kamataki T (1995) Protective effects of kampo medicines and baicalin against intestinal toxicity of a new anticancer camptothecin derivative, irinotecan hydrochloride (CPT-11), in rats. Jpn Cancer Res 86:978–984

    CAS  Google Scholar 

  • Takasuna K, Hagiwara T, Hirohashi M, Kato M, Nomura M, Nagai E, Yokoi T, Kamataki T (1996) Involvement of β-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res 56:3752–3757

    PubMed  Google Scholar 

  • Takasuna K, Hagiwara T, Hirohashi M, Kato M, Nomura M, Nagai E, Yokoi T, Kamataki T (1998) Inhibition of intestinal microflora β-glucuronidase modifies the distribution of the active metabolite of the antitumor agent, irinotecan hydrochloride (CPT-11) in rats. Cancer Chemother Pharmacol 42:280–286

    Article  CAS  PubMed  Google Scholar 

  • Tarazona JV, Sanz F (1990) Toxicity of fractions obtained from the legume species Astragalus lusitanicus Lam. lusitanicus. Toxicon 28:235–237

    Article  CAS  PubMed  Google Scholar 

  • Van Cutsem E, Douillard JY, Kohne CH (2001) Toxicity of irinotecan in patients with colorectal cancer. N Engl J Med 345:1351–1352

    Article  Google Scholar 

  • Voigt W, Fittkau M, Kopinsky P, Simon H, Holzhausen HJ, Schmoll HJ (2001) Change of histological and apoptotic patterns in the small intestine of rats after CPT-11 treatment. Onkologie 24:202

    Article  Google Scholar 

  • Yamamoto W, Verweij J, de Bruijn P, de Jonge MJ, Takano H, Nishiyama M, Kurihara M, Sparreboom A (2001) Active transepithelial transport of irinotecan (CPT-11) and its metabolites by human intestinal Caco-2 cells. Anticancer Drugs 12:419–432

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Boku N, Ohtsu A, Muto M, Nagashima F, Yoshida S (2001) Combination chemotherapy of irinotecan plus cisplatin for advanced gastric cancer: efficacy and feasibility in clinical practice. Gastric Cancer 4:144–1449

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The investigation has been supported by the minister of culture of Sachsen-Anhalt, Magdeburg, (Certificate number 3185A/0089G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Fittkau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fittkau, M., Voigt, W., Holzhausen, HJ. et al. Saccharic acid 1.4-lactone protects against CPT-11-induced mucosa damage in rats. J Cancer Res Clin Oncol 130, 388–394 (2004). https://doi.org/10.1007/s00432-004-0557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-004-0557-8

Keywords

Navigation