Skip to main content

Advertisement

Log in

Pulmonary hypertension in a neonatologist-performed echocardiographic follow-up of bronchopulmonary dysplasia

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Neonatologist-performed echocardiography (NPE) is an established tool for bedside hemodynamic evaluation, including pulmonary hypertension (PH). PH may complicate bronchopulmonary dysplasia (BPD) course. Aims of this retrospective study were to assess the feasibility of NPE follow-up of infants with BPD and to describe the course of PH of infants with moderate/severe BPD. Preterm infants <32 gestational weeks or birthweight ≤1500 g with moderate/severe BPD underwent NPE follow-up, from 36 weeks postmenstrual age up to 8 months postnatal age. Twenty-three preemies were included (birth weight 840 (213) g, gestational age 26.8 (2.3) weeks); 12/23 developed mild PH, 2/12 after discharge. PH resolved at 8.9 (3.9) months. Clinical and echocardiographic variables did not differ between infants with and without PH, except pulmonary artery acceleration time (PAAT) and PAAT/right ventricle ejection time (RVET) ratio (PAAT: 36 weeks, 68.9 (11.9) vs 52.0 (19.1), p = 0.0443; 6 months: 83.9 (38.9) vs 74.8 (16.9), p = 0.0372). No deaths or admissions for PH were reported. Neonatologist’s Image Quality Assessment score attributed by the cardiologist assumed as gold standard was adequate or optimal (9.5/14 total score); inter-rater agreement was excellent (ICC 0.974).

Conclusions: NPE follow-up seems to be feasible and safe in both intensive care and outpatient clinic. Mild PH is frequently detected in moderate/severe BPD, with good prognosis.

What is Known:

Preterm infants with bronchopulmonary dysplasia (BPD) may develop pulmonary hypertension (PH) and have a late diagnosis.

Neonatologist-performed echocardiography (NPE) is an established tool for bedside hemodynamic evaluation of the neonate.

What is New:

To our knowledge this is the first study of NPE follow-up of moderate/severe BPD, describing the course of mild PH from diagnosis to its resolution.

NPE follow-up of BPD seems to be safe and practicable, in both intensive care and outpatient clinic, as long as neonatologists maintain a sound collaboration with pediatric cardiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The research data is confidential.

Abbreviations

BPD:

Bronchopulmonary dysplasia

CHD:

Congenital heart disease

E’:

Peak early diastolic tissue velocity

LV:

Left ventricle

NICU:

Neonatal intensive care unit

NPE:

Neonatologist-performed echocardiography

PA:

Postnatal age

PAAT:

Pulmonary artery acceleration time

PDA:

Patent ductus arteriosus

PH:

Pulmonary hypertension

PMA:

Postmenstrual age

PVD:

Pulmonary vascular disease

RV:

Right ventricle

RVET:

Right ventricle ejection time

TV:

Tricuspid valve

References

  1. Mourani PM, Abman SH (2010) Pulmonary vascular disease in bronchopulmonary dysplasia: physiology, diagnosis, and treatment. In: Abman SH (ed) Bronchopulmonary dysplasia. Informa Healthcare, New York, pp 347–363

    Google Scholar 

  2. Del Cerro MJ, Sabaté Rotés A, Cartón A, Deiros L, Bret M, Cordeiro M, Verdú C, Barrios MI, Albajara L, Gutierrez-Larraya F (2014) Pulmonary hypertension in bronchopulmonary dysplasia: clinical findings, cardiovascular anomalies and outcomes. Pediatr Pulmonol 49:49–59. https://doi.org/10.1002/ppul.227977

    Article  PubMed  Google Scholar 

  3. Singh Y, Tissot C, Fraga MV, Yousef N, Cortes RG, Lopez J, Sanchez-de-Toledo J, Brierley J, Colunga JM, Raffaj D, da Cruz E, Durand P, Kenderessy P, Lang HJ, Nishisaki A, Kneyber MC, Tissieres P, Conlon TW, de Luca D (2019) International evidence-based guidelines on point of care ultrasound (POCUS) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit Care 24(1):65. https://doi.org/10.1186/s13054-020-2787-9

    Article  Google Scholar 

  4. Groves AM, Singh Y, Dempsey E, Molnar Z, Austin T, El-Khuffash A, de Boode WP, European Special Interest Group ‘Neonatologist Performed Echocardiography’ (NPE) (2018) Introduction to neonatologist-performed echocardiography. Pediatr Res 84(Suppl 1):1–12. https://doi.org/10.1038/s41390-018-0076-y

    Article  PubMed  PubMed Central  Google Scholar 

  5. de Boode WP, Singh Y, Gupta S, Austin T, Bohlin K, Dempsey E, Groves A, Eriksen BH, van Laere D, Molnar Z, Nestaas E, Rogerson S, Schubert U, Tissot C, van der Lee R, van Overmeire B, el-Khuffash A (2016) Recommendations for neonatologist performed echocardiography in Europe: consensus statement endorsed by European Society for Paediatric Research (ESPR) and European Society for Neonatology (ESN). Pediatr 80(4):465–471. https://doi.org/10.1038/pr.2016.126

    Article  Google Scholar 

  6. Mertens L, Seri I, Marek J, Arlettaz R, Barker P, McNamara P, Moon-Grady AJ, Coon PD, Noori S, Simpson J et al (2011) Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training. Writing Group of the American Society of Echocardiography (ASE) in collaboration with the European Association of Echocardiography (EAE) and the Association for European Pediatric Cardiologists (AEPC). J Am Soc Echocardiogr 24(10):1057–1078. https://doi.org/10.1093/ejechocard/jer181

    Article  PubMed  Google Scholar 

  7. Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163:1723–1729. https://doi.org/10.1164/ajrccm.163.7.2011060

    Article  CAS  PubMed  Google Scholar 

  8. Copetti R, Cattarossi L, Macagno F, Violino M, Furlan R (2008) Lung ultrasound in respiratory distress syndrome: a useful tool for early diagnosis. Neonatology 94(1):52–59. https://doi.org/10.1159/000113059

    Article  PubMed  Google Scholar 

  9. Cummings JJ, Polin RA, AAP Committee on fetus and newborn (2016) Oxygen targeting in extremely low birth weight infants. Pediatrics 138:e20161576. https://doi.org/10.1542/peds.2016-29044

    Article  PubMed  Google Scholar 

  10. Allen J, Zwerdling R, Ehrenkranz R, Gaultier C, Geggel R, Greenough A, Kleinman R, Klijanowicz A, Martinez F, Ozdemir A, Panitch HB, Nickerson B, Stein MT, Tomezsko J, van der Anker J, American Thoracic Society (2003) Statement on the care of the child with chronic lung disease of infancy and childhood. Am J Respir Crit Care Med 168:356–396. https://doi.org/10.1164/rccm.168.3.356

    Article  PubMed  Google Scholar 

  11. Balfour-Lynn IM, Field DJ, Gringras P, Hicks B, Jardine E, Jones RC, Magee AG, Primhak RA, Samuels MP, Shaw NJ et al (2009) BTS guidelines for home oxygen in children. Thorax 64(Suppl 2):ii1–i26. https://doi.org/10.1136/thx.2009.116020

    Article  PubMed  Google Scholar 

  12. Bertino E, Spada E, Occhi L, Coscia A, Giuliani F, Gagliardi L, Gilli G, Bona G, Fabris C, De Curtis M et al (2010) Neonatal anthropometic charts: the Italian neonatal study compared with other European studies. J Pediatr Gastroenterol Nutr 51(3):353–361. https://doi.org/10.1097/MPG.0b013e3181da213e

    Article  PubMed  Google Scholar 

  13. Nestaas E, Schubert U, de Boode WP, El-Khuffash A, European Special Interest Group ‘Neonatologist Performed Echocardiography’ (NPE) (2018) Tissue Doppler velocity imaging and event timings in neonates: a guide to image acquisition, measurement, interpretation, and reference values. Pediatr Res 84(Suppl 1):18–29. https://doi.org/10.1038/s41390-018-0079-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Levy PT, Patel MD, Groh G, Choudhry S, Murphy J, Holland MR, Hamvas A, Grady MR, Singh GK (2016) Pulmonary artery acceleration time provides a reliable estimate of invasive pulmonary hemodynamics in children. J Am Soc Echocardiogr 29(11):1056–1065. https://doi.org/10.1016/j.echo.2016.08.013

    Article  PubMed  PubMed Central  Google Scholar 

  15. McQuillian BM, Picard MH, Leavitt M, Weyman AE (2001) Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 104:2797–2802. https://doi.org/10.1161/hc4801.100076

    Article  Google Scholar 

  16. De Boode WP, Singh Y, Molnar Z, Schubert U, Savoia M, Sehgal A, Levy PT, PJ MN, El-Khuffash A, European Special Interest Group ‘Neonatologist Performed Echocardiography’ (NPE) (2018) Application of neonatologist performed echocardiography in the assessment and management of persistent pulmonary hypertension of the newborn. Pediatr Res 84(Suppl 1):68–77. https://doi.org/10.1038/s41390-018-0082-0

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mourani PM, Sontag MK, Younoszai A, Miller JI, Kinsella JP, Baker CD, Poindexter BB, Ingram DA, Abman SH (2015) Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med 191(1):87–95. https://doi.org/10.1164/rccm.201409-1594OC

    Article  PubMed  PubMed Central  Google Scholar 

  18. King ME, Braun H, Goldblatt A, Liberthson R, Weyman AE (1983) Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation 68:68–75. https://doi.org/10.1161/01.CIR.68.1.68

    Article  CAS  PubMed  Google Scholar 

  19. Lopez L, Colan S, Stylianou M, Granger S, Trachtenberg F, Frommelt P, Pearson G, Camarda J, Cnota J, Cohen M, Dragulescu A, Pediatric Heart Network Investigators et al (2017) Relationship of echocardiographic Z scores adjusted for body surface area to age, sex, race, and ethnicity the Pediatric Heart Network Normal Echocardiogram Database. Circ Cardiovasc Imaging 10(11):e006979. https://doi.org/10.1161/CIRCIMAGING.117.006979

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kampann C, Wiethoff CM, Wenzel A, Stolz G, Betancor M, Wippermann CF, Huth RG, Habermehl P, Knuf M, Emschermann T et al (2000) Normal values of M mode echocardiographic measurements of more than 2000 healthy infants and children in central Europe. Heart 83(6):667–672. https://doi.org/10.1136/heart.83.6.667

    Article  Google Scholar 

  21. Cantinotti M, Scalese M, Murzi B, Assanta N, Spadoni I, De Lucia V, Crocetti M, Cresti A, Gallotta M, Marotta M et al (2014) Echocardiographic nomograms for chamber diameters and areas in Caucasian children. J Am Soc Echocardiogr 27(12):1279–92.e2. https://doi.org/10.1016/j.echo.2014.08.005

    Article  PubMed  Google Scholar 

  22. Lopez L, ACPC Section’s Quality Metrics Work Group (2018) Initial transthoracic echocardiogram image quality. Amerian College of Cardiology Quality Improvement for Institutions Program https://cvquality.acc.org/initiatives/acpc-quality-network/quality-metrics. Accessed 12 Oct 2020

  23. Buting KV, Steeds RP, Slater LT, Rogers JK, Gkoutos GV, Kotecha D (2019) A practical guide to assess the reproducibility of echocardiographic measurements. J Am Soc Echocardiogr 32(12):1505–1515. https://doi.org/10.1016/j.echo.2019.08.015

    Article  Google Scholar 

  24. McNamara P, Lai W (2020) Growth of neonatal hemodynamics programs and targeted neonatal echocardiography performed by neonatologists. J Am Soc Echocardiogr 33(10):A15–A16. https://doi.org/10.1016/j.echo.2020.08.009

    Article  PubMed  Google Scholar 

  25. Australasian Society for Ultrasound in Medicine. Certificate in Clinician Performed Ultrasound (CCPU) - Advanced Clinician Performed Neonatal Ultrasound (2018) https://www.asum.com.au/education/ccpu-course. Accessed 12 Oct 2020

  26. Singh Y, Gupta S, Groves AM, Gandhi A, Thomson J, Qureshi S, Simpson JM (2016) Expert consensus statement “neonatologist performed echocardiography (NoPE) – training and accreditation in UK. Eur J Pediatr 175:281–287 https://doi.org/10.1007/s00431-015-2633-2

  27. Targeted Neonatal Echocardiography in Switzerland (2017) https://www.neonet.ch/en/training-courses/echocardiography-tne/. Accessed 12 Oct 2020

  28. Svedenkrans J, Stoecklin B, Jones JG, Doherty DA, Pillow JJ (2019) Physiology and predictors of impaired gas exchange in infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med 200(4):471–480. https://doi.org/10.1164/rccm.201810-2037OC

    Article  CAS  PubMed  Google Scholar 

  29. Mehler K, Udink Ten Cate FE, Keller T, Bangen U, Kribs A, Oberthuer A (2018) An echocardiographic screening program helps to identify pulmonary hypertension in extremely low birthweight infants with and without bronchopulmonary dysplasia: a single-center experience. Neonatology 113:81–88. https://doi.org/10.1159/000480694

    Article  PubMed  Google Scholar 

  30. Khemani E, McElhinney DB, Rhein L, Andrade O, Lacro RV, Thomas KC, Mullen MP (2007) Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 120:1260–1269. https://doi.org/10.1542/peds.2007-0971

    Article  PubMed  Google Scholar 

  31. Arjaans S, Haarman MG, Roofthooft MTR, Fries MWF, Kooi EMW, Bos AF, Berger RMF (2020) Fate of pulmonary hypertension associated with bronchopulmonary dysplasia beyond 36 weeks postmenstrual age. Arch Dis Child Fetal Neonatal Ed fetalneonatal-2019-318531. https://doi.org/10.1136/archdischild-2019-318531

  32. Mourani PM, Mandell EW, Meier M, Younoszai A, Brinton JT, Wagner BD, Arjaans S, Poindexter BB, Abman SH (2018) Early pulmonary vascular disease in preterm infants is associated with late respiratory outcomes in childhood. Am J Respir Crit Care Med 199:1020–1027. https://doi.org/10.1164/rccm.201803-0428OC

    Article  Google Scholar 

  33. Koestenberger M, Grangl G, Avian A, Gamillscheg A, Grillitsch M, Cvirn G, Burmas A, Hansmann G (2017) Normal reference values and z scores of the pulmonary artery acceleration time in children and its importance for the assessment of pulmonary hypertension. Circ Cardiovasc Imaging 10(1):e005336. https://doi.org/10.1161/CIRCIMAGING.116.005336

    Article  PubMed  Google Scholar 

  34. Nagiub M, Lee S, Guglani L (2015) Echocardiographic assessment of pulmonary hypertension in infants with bronchopulmonary dysplasia: systematic review of literature and a proposed algorithm for assessment. Echocardiography. 32(5):819–833. https://doi.org/10.1111/echo.12738

    Article  PubMed  Google Scholar 

  35. Patel MD, Breatnach CR, James AT, Choudhry S, McNamara PJ, Jain A, Franklin O, Hamvas A, Mertens L, Singh GK, El-Khuffash A, Levy PT (2019) Echocardiographic assessment of right ventricular afterload in preterm infants: maturational patterns of pulmonary artery acceleration time over the first year of age and implications for pulmonary hypertension. J Am Soc Echocardiogr 32(7):884–894.e4. https://doi.org/10.1016/j.echo.2019.03.015

    Article  PubMed  PubMed Central  Google Scholar 

  36. Levy PT, Patel MD, Choudhry S, Hamvas A, Singh GK (2018) Evidence of echocardiographic markers of pulmonary vascular disease in asymptomatic infants born preterm at one year of age. J Pediatr 197:48–56.e2. https://doi.org/10.1016/j.jpeds.2018.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  37. Di Maria MV, Younoszai AK, Sontag MK, Miller JI, Poindexter BB, Ingram DA, Abman SH, Mourani PM (2015) Maturational changes in diastolic longitudinal myocardial velocity in preterm infants. J Am Soc Echocardiogr 28:1045–1052. https://doi.org/10.1016/j.echo.2015.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  38. Negrine RJ, Chikermane A, Wright JG, Ewer AK (2012) Assessment of myocardial function in neonates using tissue Doppler imaging. Arch Dis Child Fetal Neonatal Ed 97(4):F304–F306. https://doi.org/10.1136/adc.2009.175109

    Article  CAS  PubMed  Google Scholar 

  39. Roberson DA, Cui W, Chen Z, Madronero LF, Cuneo BF (2007) Annular and septal Doppler tissue imaging in children: normal z-score tables and effects of age, heart rate, and body surface area. J Am Soc Echocardiogr 20:1276–1284. https://doi.org/10.1016/j.echo.2007.02.023

    Article  PubMed  Google Scholar 

  40. Eidem BW, McMahon CJ, Cohen RR, Wu J, Finkelshteyn I, Kovalchin JP, Ayres NA, Bezold LI, O'Brian Smith E, Pignatelli RH (2004) Impact of cardiac growth on Doppler tissue imaging velocities: a study in healthy children. J Am Soc Echocardiogr 17:212–221. https://doi.org/10.1016/j.echo.2003.12.005

    Article  PubMed  Google Scholar 

  41. Eriksen BH, Nestaas E, Hole T, Liestøl K, Støylen A, Fugelseth D (2014) Myocardial function in term and preterm infants. Influence of heart size, gestational age and postnatal maturation. Early Hum Dev 90(7):359–364. https://doi.org/10.1016/j.earlhumdev.2014.04.010

    Article  PubMed  Google Scholar 

  42. Breatnach CR, El-Khuffash A, James A, McCallion N, Franklin O (2017) Serial measures of cardiac performance using tissue Doppler imaging velocity in preterm infants <29weeks gestations. Early Hum Dev 108:33–39. https://doi.org/10.1016/j.earlhumdev.2017.03.012

    Article  PubMed  Google Scholar 

  43. El-Khuffash A, Schubert U, Levy PT, Nestaas E, de Boode WP, European Special Interest Group ‘Neonatologist Performed Echocardiography’ (NPE) (2018) Deformation imaging and rotational mechanics in neonates: a guide to image acquisition, measurement, interpretation, and reference values. Pediatr Res 84(Suppl 1):30–45. https://doi.org/10.1038/s41390-018-0080-2

    Article  PubMed  PubMed Central  Google Scholar 

  44. Levy PT, El-Khuffash A, Patel MD, Breatnach CR, James AT, Sanchez AA, Abuchabe C, Rogal SR, Holland MR, McNamara PJ et al (2017) Maturational patterns of systolic ventricular deformation mechanics by two-dimensional speckle-tracking echocardiography in preterm infants over the first year of age. J Am Soc Echocardiogr 30(7):685–698.e1. https://doi.org/10.1016/j.echo.2017.03.003

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS designed the study, performed the data collection and analysis, drafted the manuscript, and approved the final manuscript as submitted. LC performed statistical analysis and participated to data analysis. AT, FRM, DP, PF, and LC participated to data collection and were involved in data analysis. PM participated to study design and made critical revisions to the final manuscript. All authors were involved in the production of the manuscript and approved the final version.

Corresponding author

Correspondence to Marilena Savoia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study received approval from the Ethical Committee of the Friuli Venezia Giulia region, Udine, Italy (Approval No. CEUR-2018-OS-119-ASUIUD).

Consent to participate

Not applicable

Consent for publication

Not applicable

Code availability

Not applicable

Additional information

Communicated by Daniele De Luca

There are no prior publications or submissions with any overlapping information, including studies and patients. Preliminary results were presented as abstract at the 6th Congress of the European Academy of Pediatric Societies (EAPS 2016), Geneva (Switzerland) October 21–25, 2016.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savoia, M., Morassutti, F.R., Castriotta, L. et al. Pulmonary hypertension in a neonatologist-performed echocardiographic follow-up of bronchopulmonary dysplasia. Eur J Pediatr 180, 1711–1720 (2021). https://doi.org/10.1007/s00431-021-03954-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-021-03954-y

Keywords

Navigation