Skip to main content
Log in

Cognitive function in children with classic congenital adrenal hyperplasia

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Studies of cognitive function in patients with congenital adrenal hyperplasia (CAH) are few and controversial. This study aimed to investigate general intelligence and specific cognitive functions in children with salt wasting (SW) form of CAH and their relationship to demographic, clinical, and laboratory variables. This study included 36 children with classic 21 hydroxylase deficiency SW type of CAH (males = 12; females = 24; mean age = 15.6 ± 2.3 years). Intelligence quotient (IQ) and cognition were assessed using Wechsler Intelligence Scale for Children 3rd edition (WISC-III) and Stanford Binet Subsets Test version 4 (SBST4). Compared to controls, patients had lower mean full-scale (FS) IQ (P = 0.01) score, particularly performance IQ score (P = 0.001), and comprehension, pattern analysis, quantitation, bead memory, and memory for sentences of SBST4 (P = 0.05, P = 0.014, P = 0.001, P = 0.002, and P = 0.05, respectively). Lower IQ was observed in poorly controlled compared with well-controlled patients on medical treatment. Significant correlations were observed between FSIQ with age (r = − 0.810; P = 0.001), duration of treatment (r = − 0.887; P = 0.01), dose of glucocorticoids (r = − 0.463; P = 0.01), 17-OHP (r = − 0.543; P = 0.01) and testosterone (r = − 0.462; P = − 0.006) levels, and number of hyponatremic episodes (r = − 0.350; P = 0.05). In multivariate analysis, the independent risks of low FSIQ were the dose of glucocorticoids (OR = 1.14; 95% CI = 1.08–1.23, P = 0.0001), 17-OHP levels (OR = 2.25; 95% CI = 1.19–2.85, P = 0.01), and number of hyponatremic episodes (OR = 4.34; 95% CI = 2.05–5.15, P = 0.01).

Conclusion: Patients with SW form of CAH may have lower IQ and cognitive deficits which may be related to the dose of glucocorticoids, androgen excess, and number of hyponatremic episodes.

What is Known:

Congenital adrenal hyperplasia (CAH) is a group of inherited impairment of cortisol biosynthesis.

Studies of cognitive function in patients with congenital adrenal hyperplasia (CAH) are few and controversial.

What is New:

Children with CAH may have lower intelligent quotient (IQ) and cognitive deficits.

Early hyponatremic episodes, overtreatment with glucocorticoids, and high androgen levels may be possible causative factors for the cognitive deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAH:

Congenital adrenal hyperplasia

IQ:

Intelligence quotient

SBST4:

Stanford Binet Subsets Test version 4

SW:

Salt wasting

WISC-III:

Wechsler Intelligence Scale for Children 3rd edition

References

  1. Ambroziak U, Bednarczuk T, Ginalska-Malinowska M, Małunowicz EM, Grzechocińska B, Kamiński P, Bablok L, Przedlacki J, Bar-Andziak E (2010) Congenital adrenal hyperplasia due to 21-hydroxylase deficiency—management in adults. Endokrynol Pol 61(1):142–155

    CAS  PubMed  Google Scholar 

  2. Auchus RJ (2010) Congenital adrenal hyperplasia in adults. Curr Opin Endocrinol Diabetes Obes. 17:210–216

    Article  Google Scholar 

  3. Bachelot A, Chakhtoura Z, Rouxel A, Dulon J, Touraine P. Hormonal treatment of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Ann Endocrinol 68(4):274–280

    Article  CAS  Google Scholar 

  4. Bergamaschi R, Livieri C, Uggetti C, Candeloro E, Egitto MG, Pichiecchio A, Cosi V, Bastianello S (2006) Brain white matter impairment in congenital adrenal hyperplasia. Arch Neurol 63(3):413–416

    Article  Google Scholar 

  5. Browne WV, Hindmarsh PC, Pasterski V, Hughes IA, Acerini CL, Spencer D, Neufeld S, Hines M (2015) Working memory performance is reduced in children with congenital adrenal hyperplasia. Horm Behav 67:83–88

    Article  Google Scholar 

  6. Collaer ML, Hindmarsh PC, Pasterski V, Fane BA, Hines M (2016) Reduced short term memory in congenital adrenal hyperplasia (CAH) and its relationship to spatial and quantitative performance. Psychoneuroendocrinology 64:164–173

    Article  Google Scholar 

  7. Diabetes Endocrine Metabolism Pediatric Unit (2002) Cairo University Children’s Hospital. Egyptian growth curves. [http://dempuegypt.blogspot.com]

  8. Ernst M, Maheu FS, Schroth E, Hardin J, Golan LG, Cameron J, Allen R, Holzer S, Nelson E, Pine DS, Merke DP (2007) Amygdala function in adolescents with congenital adrenal hyperplasia: a model for the study of early steroid abnormalities. Neuropsychologia 45(9):2104–2113

    Article  Google Scholar 

  9. Gaudiano C, Malandrini A, Pollazzon M, Murru S, Mari F, Renieri A, Federico A (2010) Leukoencephalopathy in 21-beta hydroxylase deficiency: report of a family. Brain and Development 32:421–424

    Article  Google Scholar 

  10. Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist. Stanford University Press, Stanford, CA

    Google Scholar 

  11. Huynh T, McGown I, Cowley D, Nyunt O, Leong GM, Harris M, Cotterill AM (2009) The clinical and biochemical spectrum of congenital adrenal hyperplasia secondary to 21-hydroxylase deficiency. Clin Biochem Rev 30(2):75–86

    PubMed  PubMed Central  Google Scholar 

  12. Isgor C, Kabbaj M, Akil H, Watson SJ (2004) Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus 14(5):636–648

    Article  Google Scholar 

  13. Johannsen TH, Ripa CP, Reinisch JM, Schwartz M, Mortensen EL, Main KM (2006) Impaired cognitive function in women with congenital adrenal hyperplasia. J Clin Endocrinol Metab 91:1376–1381

    Article  CAS  Google Scholar 

  14. Joint LWPES/ESPE CAH Working Group (2002) Consensus statement on 21-hydroxylase deficiency from the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. J Clin Endocrinol Metab 87(9):4048–4053

    Article  Google Scholar 

  15. Karlsson L, Gezelius A, Nordenström A, Hirvikoski T, Lajic S (2017) Cognitive impairment in adolescents and adults with congenital adrenal hyperplasia. Clin Endocrinol 87(6):651–659

    Article  CAS  Google Scholar 

  16. Labarta JI, Bello E, Ruiz-Echarri M, Rueda C, Martul P, Mayayo E, Ferrández Longás A (2004) Childhood-onset congenital adrenal hyperplasia: long-term outcome and optimization of therapy. J Pediatr Endocrinol Metab 17(Suppl 3):411–422

    PubMed  Google Scholar 

  17. León-Carrión J, Atutxa AM, Mangas MA, Soto-Moreno A, Pumar A, Leon-Justel A, Martín-Rodriguez JF, Venegas E, Domínguez-Morales MR, Leal-Cerro A (2009) A clinical profile of memory impairment in humans due to endogenous glucocorticoid excess. Clin Endocrinol 70(2):192–200

    Article  Google Scholar 

  18. Lewis VG, Money J, Epstein R (1968) Concordance of verbal and nonverbal ability in the adrenogenital syndrome. Johns Hopkins Med J 122(4):192–195

    CAS  PubMed  Google Scholar 

  19. Maheu FS, Merke DP, Schroth EA, Keil MF, Hardin J, Poeth K, Pine DS, Ernst M (2008) Steroid abnormalities and the developing brain: declarative memory for emotionally arousing and neutral material in children with congenital adrenal hyperplasia. Psychoneuroendocrinology 33:238–245

    Article  CAS  Google Scholar 

  20. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45(239):13–23

    Article  CAS  Google Scholar 

  21. McCreary JK, Truica LS, Friesen B, Yao Y, Olson DM, Kovalchuk I, Cross AR, Metz GA (2016) Altered brain morphology and functional connectivity reflect a vulnerable affective state after cumulative multigenerational stress in rats. Neuroscience 330:79–89

    Article  CAS  Google Scholar 

  22. McGuire LS, Ryan KO, Omenn GS (1975) Congenital adrenal hyperplasia. II. Cognitive and behavioral studies. Behav Genet 5(2):175–188

    Article  CAS  Google Scholar 

  23. Melika LK (1998) The Stanford. Binet intelligence scale. Arabic examiner’s handbook. 4th ed. Dar El Maref Publishing, Cairo

    Google Scholar 

  24. Melika LK (1996) Wechsler children intelligence scale-revised manual: Arabic examiner’s handbook, 1st edn. Dar Egyptian Books House, Cairo

    Google Scholar 

  25. Merke DP, Fields JD, Keil MF, Vaituzis AC, Chrousos GP, Giedd JN (2003) Children with classic congenital adrenal hyperplasia have decreased amygdala volume: potential prenatal and postnatal hormonal effects. J Clin Endocrinol Metab 88(4):1760–1765

    Article  CAS  Google Scholar 

  26. Merke DP, Giedd JN, Keil MF, Mehlinger SL, Wiggs EA, Holzer S, Rawson E, Vaituzis AC, Stratakis CA, Chrousos GP (2005) Children experience cognitive decline despite reversal of brain atrophy one year after resolution of Cushing syndrome. J Clin Endocrinol Metab 90(5):2531–2536

    Article  CAS  Google Scholar 

  27. Merke DP (2008) Approach to the adult with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 93:653–660

    Article  CAS  Google Scholar 

  28. Mnif MF, Kamoun M, Mnif F, Charfi N, Kallel N, Rekik N, Naceur BB, Fourati H, Daoud E, Mnif Z, Sfar MH, Younes-Mhenni S, Sfar MT, Hachicha M, Abid M (2013) Brain magnetic resonance imaging findings in adult patients with congenital adrenal hyperplasia: increased frequency of white matter impairment and temporal lobe structures dysgenesis. Indian J Endocrinol Metab 17(1):121–127

    Article  CAS  Google Scholar 

  29. Nass R, Heier L, Moshang T, Oberfield S, George A, New MI, Speiser PW (1997) Magnetic resonance imaging in the congenital adrenal hyperplasia population: increased frequency of white-matter abnormalities and temporal lobe atrophy. J Child Neurol 12:181–186

    Article  CAS  Google Scholar 

  30. Nimkarn S, Lin-Su K, New MI (2009) Steroid 21 hydroxylase deficiency congenital adrenal hyperplasia. Endocrinol Metab Clin N Am 38:699–718

    Article  CAS  Google Scholar 

  31. Ogilvie CM, Crouch NS, Rumsby G, Creighton SM, Liao LM, Conway GS (2006) Congenital adrenal hyperplasia in adults: a review of medical, surgical and psychological issues. Clin Endocrinol 64(1):2–11

    Article  CAS  Google Scholar 

  32. Patil CG, Lad SP, Katznelson L, Laws ER Jr (2007) Brain atrophy and cognitive deficits in Cushing’s disease. Neurosurg Focus 23(3):E11

    PubMed  Google Scholar 

  33. Sinforiani E, Livieri C, Mauri M, Bisio P, Sibilla L, Chiesa L, Martelli A (1994) Cognitive and neuroradiological findings in congenital adrenal hyperplasia. Psychoneuroendocrinology 19(1):55–64

    Article  CAS  Google Scholar 

  34. Somajni F, Sovera V, Albizzati A, Russo G, Peroni P, Seragni G, Lenti C (2011) Neuropsychological assessment in prepubertal patients with congenital adrenal hyperplasia: preliminary study. Minerva Pediatr 63(1):1–9

    CAS  PubMed  Google Scholar 

  35. Starkman MN, Gebarski SS, Berent S, Schteingart DE (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32(9):756–765

    Article  CAS  Google Scholar 

  36. Tanner JM, Whitehouse RH (1975) A note on the bone age at which patients with true isolated growth hormone deficiency enter puberty. J Clin Endocrinol Metab 41(4):788–790

    Article  CAS  Google Scholar 

  37. Thomas KM, Drevets WC, Dahl RE, Ryan ND, Birmaher B, Eccard CH, Axelson D, Whalen PJ, Casey BJ (2001) Amygdala response to fearful faces in anxious and depressed children. Arch Gen Psychiatry 58(11):1057–1063

    Article  CAS  Google Scholar 

  38. Thorndike RL, Hagen EP, Sattler JM (1986) The Stanford-Binet intelligence scale. Technical manual. 4th ed. Riverside, Chicago

    Google Scholar 

  39. Wechsler D (1991) Wechsler intelligence scale for children, 3rd edn. Psychological Corporation Harcourt Brace Jovanovich, San Antonio, TX

    Google Scholar 

  40. White PC (2018) Update on diagnosis and management of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Curr Opin Endocrinol Diabetes Obes 25(3):178–174

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SH participated in the design of the protocol of the study, coordination of the research, performance of the clinical part, analyses of the data, and writing the draft of the paper. KM participated in the design of the protocol of the study and coordination of the research, performance of the clinical part, analyses of the data, and writing the draft of the paper. HF participated in performance of the clinical part, writing of the draft, and analyses of the results. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Kotb Abbass Metwalley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The study protocol was approved by the Ethics Committee of the Faculty of Medicine, Assiut Children University Hospital, Assiut, Egypt.

Informed consent

Written informed consents were obtained from the parents of all participants.

Additional information

Communicated by Peter de Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, S.A., Metwalley, K.A. & Farghaly, H.S. Cognitive function in children with classic congenital adrenal hyperplasia. Eur J Pediatr 177, 1633–1640 (2018). https://doi.org/10.1007/s00431-018-3226-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-018-3226-7

Keywords

Navigation