Skip to main content

Advertisement

Log in

High polymorphism rates in well-known T cell epitopes restricted by protective HLA alleles during HIV infection are associated with rapid disease progression in early-infected MSM in China

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

T cell epitopes restricted by several protective HLA alleles, such as B*57, B*5801, B*27, B*51 and B*13, have been very well defined over the past two decades. We investigated 32 well-known T cell epitopes restricted by protective HLA molecules among 54 Chinese men who have sex with men (MSM) at the early stage of HIV-1 infection. Subjects in our cohort carrying protective HLA types did not exhibit slow CD4 T cell count decline (P = 0.489) or low viral load set points (P = 0.500). Variations occurred in 96.88% (31/32) of the known wild-type epitopes (rate 1.85–100%), and the variation rates of the strains of two CRF01_AE lineages were significantly higher than those of non-CRF01_AE strains (76.82% vs. 48.96%, P = 0.004; 71.27% vs. 8.96%, P = 0.025). Subjects infected with CRF01_AE exhibited relatively rapid disease progression (P = 0.035). Therefore, the lack of wild-type protective T cell epitopes restricted by classic protective HLA alleles in CRF01_AE HIV-1 strains may be one of the reasons why rapid disease progression is observed in Chinese MSM with HIV-1 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HIV-1:

Human immunodeficiency virus type 1

HLA:

Human leukocyte antigen

MSM:

Men who have sex with men

ELISA:

Enzyme-linked immunosorbent assay

VL:

Viral load

PCR-SSP:

Polymerase chain reaction sequence-specific primer

References

  1. McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF (2010) The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol 10:11–23. https://doi.org/10.1038/nri2674

    Article  CAS  PubMed  Google Scholar 

  2. Troyer RM, McNevin J, Liu Y, Zhang SC, Krizan RW, Abraha A, Tebit DM, Zhao H, Avila S, Lobritz MA et al (2009) Variable fitness impact of HIV-1 escape mutations to cytotoxic T lymphocyte (CTL) response. PLoS Pathog 5:e1000365. https://doi.org/10.1371/journal.ppat.1000365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen TM, Altfeld M, Geer SC, Kalife ET, Moore C, O’Sullivan KM, DeSouza I, Feeney ME, Eldridge RL, Maier EL et al (2005) Selective escape from CD8 + T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution†. J Virol 79:13239–13249. https://doi.org/10.1128/jvi.79.21.13239-13249.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McMichael AJ (2006) HIV vaccines. Annu Rev Immunol 24:227–255. https://doi.org/10.1146/annurev.immunol.24.021605.090605

    Article  CAS  PubMed  Google Scholar 

  5. Ranasinghe SR, Kramer HB, Wright C, Kessler BM, di Gleria K, Zhang Y, Gillespie GM, Blais ME, Culshaw A, Pichulik T et al (2011) The antiviral efficacy of HIV-specific CD8(+) T-cells to a conserved epitope is heavily dependent on the infecting HIV-1 isolate. PLoS Pathog 7:e1001341. https://doi.org/10.1371/journal.ppat.1001341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun J, Zhao Y, Peng Y, Han Z, Liu G, Qin L, Liu S, Sun H, Wu H, Dong T et al (2016) Multiple T-cell responses are associated with better control of acute HIV-1 infection: an observational study. Medicine 95:e4429. https://doi.org/10.1097/MD.0000000000004429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanke T (2014) Conserved immunogens in prime-boost strategies for the next-generation HIV-1 vaccines. Expert Opin Biol Ther 14:601–616. https://doi.org/10.1517/14712598.2014.885946

    Article  CAS  PubMed  Google Scholar 

  8. Excler JL, Robb ML, Kim JH (2015) Prospects for a globally effective HIV-1 vaccine. Vaccine 33(Suppl 4):D4–D12. https://doi.org/10.1016/j.vaccine.2015.03.059

    Article  PubMed  Google Scholar 

  9. McMichael A, Mwau M, Hanke T (2002) HIV T cell vaccines, the importance of clades. Vaccine 20:1918–1921. https://doi.org/10.1016/s0264-410x(02)00067-1

    Article  CAS  PubMed  Google Scholar 

  10. Santra S, Korber BT, Muldoon M, Barouch DH, Nabel GJ, Gao F, Hahn BH, Haynes BF, Letvin NL (2008) A centralized gene-based HIV-1 vaccine elicits broad cross-clade cellular immune responses in rhesus monkeys. Proc Natl Acad Sci USA 105:10489–10494. https://doi.org/10.1073/pnas.0803352105

    Article  PubMed  Google Scholar 

  11. Gao X, Bashirova A, Iversen AKN, Phair J, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, Altfeld M, O’Brien SJ et al (2005) AIDS restriction HLA allotypes target distinct intervals of HIV-1 pathogenesis. Nat Med 11:1290–1292. https://doi.org/10.1038/nm1333

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Peng Y, Yan H, Xu K, Saito M, Wu H, Chen X, Ranasinghe S, Kuse N, Powell T et al (2011) Multilayered defense in HLA-B51-associated HIV viral control. J Immunol 187:684–691. https://doi.org/10.4049/jimmunol.1100316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leslie A, Matthews PC, Listgarten J, Carlson JM, Kadie C, Ndung’u T, Brander C, Coovadia H, Walker BD, Heckerman D et al (2010) Additive contribution of HLA class I alleles in the immune control of HIV-1 infection. J Virol 84:9879–9888. https://doi.org/10.1128/jvi.00320-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinez-Picado J, Prado JG, Fry EE, Pfafferott K, Leslie A, Chetty S, Thobakgale C, Honeyborne I, Crawford H, Matthews P et al (2006) Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J Virol 80:3617–3623. https://doi.org/10.1128/JVI.80.7.3617-3623.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goulder PJ, Phillips RE, Colbert RA, McAdam S, Ogg G, Nowak MA, Giangrande P, Luzzi G, Morgan B, Edwards A et al (1997) Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med 3:212–217

    Article  CAS  PubMed  Google Scholar 

  16. Crawford H, Matthews PC, Schaefer M, Carlson JM, Leslie A, Kilembe W, Allen S, Ndung’u T, Heckerman D, Hunter E et al (2010) The hypervariable HIV-1 capsid protein residues comprise HLA-driven CD8 + T-cell escape mutations and covarying HLA-independent polymorphisms. J Virol 85:1384–1390. https://doi.org/10.1128/jvi.01879-10

    Article  PubMed  PubMed Central  Google Scholar 

  17. Han X, An M, Zhang M, Zhao B, Wu H, Liang S, Chen X, Zhuang M, Yan H, Fu J et al (2013) Identification of 3 distinct HIV-1 founding strains responsible for expanding epidemic among men who have sex with men in 9 Chinese cities. J Acquir Immune Defic Syndr. 64:16–24. https://doi.org/10.1097/QAI.0b013e3182932210

    Article  PubMed  PubMed Central  Google Scholar 

  18. An M, Han X, Xu J, Chu Z, Jia M, Wu H, Lu L, Takebe Y, Shang H (2012) Reconstituting the epidemic history of HIV strain CRF01_AE among men who have sex with men (MSM) in Liaoning, northeastern China: implications for the expanding epidemic among MSM in China. J Virol 86:12402–12406. https://doi.org/10.1128/JVI.00262-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang S, He X, Xing H, Ruan Y, Hong K, Cheng C, Hu Y, Xin R, Wei J, Feng Y et al (2012) A comprehensive mapping of HIV-1 genotypes in various risk groups and regions across China based on a nationwide molecular epidemiologic survey. PLoS One 7:e47289. https://doi.org/10.1371/journal.pone.0047289

    Article  CAS  Google Scholar 

  20. Pai NP, Ng OT, Lin L, Laeyendecker O, Quinn TC, Sun YJ, Lee CC, Leo YS (2011) Increased rate of CD4 + T-cell decline and faster time to antiretroviral therapy in HIV-1 subtype CRF01_AE infected seroconverters in Singapore. PLoS One 6:e15738. https://doi.org/10.1371/journal.pone.0015738

    Article  CAS  Google Scholar 

  21. Time (2000) from HIV-1 seroconversion to AIDS and death before widespread use of highly-active antiretroviral therapy: a collaborative re-analysis. Lancet 355:1131–1137. https://doi.org/10.1016/s0140-6736(00)02061-4

    Article  Google Scholar 

  22. Li Y, Han Y, Xie J, Gu L, Li W, Wang H, Lv W, Song X, Li Y, Routy JP et al (2014) CRF01_AE subtype is associated with X4 tropism and fast HIV progression in Chinese patients infected through sexual transmission. AIDS 28:521–530. https://doi.org/10.1097/QAD.0000000000000125

    Article  CAS  PubMed  Google Scholar 

  23. Chu M, Zhang W, Zhang X, Jiang W, Huan X, Meng X, Zhu B, Yang Y, Tao Y, Tian T et al (2017) HIV-1 CRF01_AE strain is associated with faster HIV/AIDS progression in Jiangsu Province, China. Sci Rep 7:1570. https://doi.org/10.1038/s41598-017-01858-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brener J, Gall A, Batorsky R, Riddell L, Buus S, Leitman E, Kellam P, Allen T, Goulder P, Matthews PC (2015) Disease progression despite protective HLA expression in an HIV-infected transmission pair. Retrovirology 12:55. https://doi.org/10.1186/s12977-015-0179-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang X, Lodi S, Fox Z, Li W, Phillips A, Porter K, Lutsar I, Kelleher A, Li N, Xu X et al (2013) Rate of CD4 decline and HIV-RNA change following HIV seroconversion in men who have sex with men: a comparison between the Beijing PRIMO and CASCADE cohorts. J Acquir Immune Defic Syndr 62:441–446. https://doi.org/10.1097/QAI.0b013e31827f5c9a

    Article  CAS  PubMed  Google Scholar 

  26. Goonetilleke N, Liu MKP, Salazar-Gonzalez JF, Ferrari G, Giorgi E, Ganusov VV, Keele BF, Learn GH, Turnbull EL, Salazar MG et al (2009) The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J Exp Med 206:1253–1272. https://doi.org/10.1084/jem.20090365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng K, Pertea M, Rongvaux A, Wang L, Durand CM, Ghiaur G, Lai J, McHugh HL, Hao H, Zhang H et al (2015) Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517:381–385. https://doi.org/10.1038/nature14053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McMichael AJ, Rowland-Jones SL (2001) Cellular immune responses to HIV. Nature 410:980–987. https://doi.org/10.1038/35073658

    Article  CAS  PubMed  Google Scholar 

  29. Carlson JM, Du VY, Pfeifer N, Bansal A, Tan VY, Power K, Brumme CJ, Kreimer A, DeZiel CE, Fusi N et al (2016) Impact of pre-adapted HIV transmission. Nat Med 22:606–613. https://doi.org/10.1038/nm.4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pereyra F, Heckerman D, Carlson JM, Kadie C, Soghoian DZ, Karel D, Goldenthal A, Davis OB, DeZiel CE, Lin T et al (2014) HIV control is mediated in part by CD8 + T-cell targeting of specific epitopes. J Virol 88:12937–12948. https://doi.org/10.1128/jvi.01004-14

    Article  PubMed  PubMed Central  Google Scholar 

  31. Han X, Xu J, Chu Z, Dai D, Lu C, Wang X, Zhao L, Zhang C, Ji Y, Zhang H et al (2011) Screening acute HIV infections among Chinese men who have sex with men from voluntary counseling & testing centers. PLoS ONE 6:e28792. https://doi.org/10.1371/journal.pone.0028792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang X, Chen H, Li W, Li H, Jin X, Perelson AS, Fox Z, Zhang T, Xu X, Wu H (2012) Precise determination of time to reach viral load set point after acute HIV-1 infection. J Acquir Immune Defic Syndr 61:448–454. https://doi.org/10.1097/QAI.0b013e31827146e0

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang F, Han X, Zhang H, Zhao B, An M, Xu J, Chu Z, Dong T, Shang H Multi-layered Gag-specific immunodominant responses contribute to improved viral control in the CRF01_AE subtype of HIV-1-infected MSM subjects. BMC Immunol 2016, 17, 28, https://doi.org/10.1186/s12865-016-0166-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, Peddada L, Heldebrant C, Smith R, Conrad A, Kleinman SH et al (2003) Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. Aids 17:1871–1879. https://doi.org/10.1097/01.aids.0000076308.76477.b8

    Article  PubMed  Google Scholar 

  35. Hu QH, Xu JJ, Zou HC, Liu J, Zhang J, Ding HB, Qian HZ, Li SR, Liu Y, Jiang YJ et al (2014) Risk factors associated with prevalent and incident syphilis among an HIV-infected cohort in Northeast China. BMC Infect Dis 14:658. https://doi.org/10.1186/s12879-014-0658-1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hu QH, Xu JJ, Chu ZX, Zhang J, Yu YQ, Yu H, Ding HB, Jiang YJ, Geng WQ, Wang N et al (2017) Prevalence and determinants of herpes simplex virus type 2 (HSV-2)/syphilis co-infection and HSV-2 mono-infection among human immunodeficiency virus positive men who have sex with men: a cross-sectional study in Northeast China. Jpn J Infect Dis 70:284–289. https://doi.org/10.7883/yoken.JJID.2016.177

    Article  PubMed  Google Scholar 

  37. Salazar-Gonzalez JF, Bailes E, Pham KT, Salazar MG, Guffey MB, Keele BF, Derdeyn CA, Farmer P, Hunter E, Allen S et al (2008) Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J Virol 82:3952–3970. https://doi.org/10.1128/jvi.02660-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang H, Zhao B, Han X, Wang Z, Liu B, Lu C, Zhang M, Liu J, Chen O, Hu Q et al (2013) Associations of HLA class I antigen specificities and haplotypes with disease progression in HIV-1-infected Hans in Northern China. Human Immunol 74:1636–1642. https://doi.org/10.1016/j.humimm.2013.08.287

    Article  CAS  Google Scholar 

  39. Ngumbela KC, Day CL, Mncube Z, Nair K, Ramduth D, Thobakgale C, Moodley E, Reddy S, de Pierres C, Mkhwanazi N et al (2008) Targeting of a CD8 T cell env epitope presented by HLA-B*5802 is associated with markers of HIV disease progression and lack of selection pressure. AIDS Res Hum Retrovir 24:72–82. https://doi.org/10.1089/aid.2007.0124

    Article  CAS  PubMed  Google Scholar 

  40. Llano A, Williams A, Olvera A, Silva-Arrieta S, Brander C (2013) Best-characterized HIV-1 CTL epitopes: the 2013 update. In: Yusim K et al (eds) HIV Molecular Immunology, Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, pp 3–25

  41. Honeyborne I, Prendergast A, Pereyra F, Leslie A, Crawford H, Payne R, Reddy S, Bishop K, Moodley E, Nair K et al (2007) Control of human immunodeficiency virus type 1 is associated with HLA-B*13 and targeting of multiple gag-specific CD8 + T-cell epitopes. J Virol 81:3667–3672. https://doi.org/10.1128/jvi.02689-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang H, Han X, Zhao B, An M, Wang Z, Jiang F, Xu J, Zhang Z, Dong T, Shang H (2015) Multilayered HIV-1 gag-specific T-cell responses contribute to slow progression in HLA-A*30-B*13-C*06-positive patients. AIDS 29:993–1002. https://doi.org/10.1097/QAD.0000000000000652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goulder PJR, Bunce M, Krausa P, McIntyre K, Crowley S, Morgan B, Edwards A, Giangrande P, Phillips RE, McMichael AJ, Novel (1996) Cross-restricted, conserved, and immunodominant cytotoxic T lymphocyte epitopes in slow progressors in HIV type 1 infection. Aids Res Hum Retrovir 12:1691–1698. https://doi.org/10.1089/aid.1996.12.1691

    Article  CAS  PubMed  Google Scholar 

  44. Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S, Rathnavalu P, Moore C, Pfafferott KJ, Hilton L et al (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432:769–775. https://doi.org/10.1038/nature03113

    Article  CAS  PubMed  Google Scholar 

  45. Ferre AL, Lemongello D, Hunt PW, Morris MM, Garcia JC, Pollard RB, Yee HF Jr, Martin JN, Deeks SG, Shacklett BL (2010) Immunodominant HIV-specific CD8 + T-cell responses are common to blood and gastrointestinal mucosa, and Gag-specific responses dominate in rectal mucosa of HIV controllers. J Virol 84:10354–10365. https://doi.org/10.1128/JVI.00803-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Altfeld M, Kalife ET, Qi Y, Streeck H, Lichterfeld M, Johnston MN, Burgett N, Swartz ME, Yang A, Alter G et al (2006) HLA alleles associated with delayed progression to AIDS contribute strongly to the initial CD8(+) T cell response against HIV-1. PLoS Med 3:e403. https://doi.org/10.1371/journal.pmed.0030403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goulder PJ, Walker BD (2012) HIV and HLA class I: an evolving relationship. Immunity 37:426–440. https://doi.org/10.1016/j.immuni.2012.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chikata T, Carlson JM, Tamura Y, Borghan MA, Naruto T, Hashimoto M, Murakoshi H, Le AQ, Mallal S, John M et al (2014) Host-specific adaptation of HIV-1 subtype B in the Japanese population. J Virol 88:4764–4775. https://doi.org/10.1128/jvi.00147-14

    Article  PubMed  PubMed Central  Google Scholar 

  49. Carlson JM, Le AQ, Shahid A, Brumme ZL (2015) HIV-1 adaptation to HLA: a window into virus-host immune interactions. Trends Microbiol 23:212–224. https://doi.org/10.1016/j.tim.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  50. Kloverpris HN, Leslie A, Goulder P (2015) Role of HLA adaptation in HIV evolution. Front Immunol 6:665. https://doi.org/10.3389/fimmu.2015.00665

    Article  CAS  PubMed  Google Scholar 

  51. Payne R, Muenchhoff M, Mann J, Roberts HE, Matthews P, Adland E, Hempenstall A, Huang KH, Brockman M, Brumme Z et al (2014) Impact of HLA-driven HIV adaptation on virulence in populations of high HIV seroprevalence. Proc Natl Acad Sci USA 111:E5393–E5400. https://doi.org/10.1073/pnas.1413339111

    Article  CAS  PubMed  Google Scholar 

  52. Kawashima Y, Pfafferott K, Frater J, Matthews P, Payne R, Addo M, Gatanaga H, Fujiwara M, Hachiya A, Koizumi H et al (2009) Adaptation of HIV-1 to human leukocyte antigen class I. Nature 458:641–645. https://doi.org/10.1038/nature07746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Katoh J, Kawana-Tachikawa A, Shimizu A, Zhu D, Han C, Nakamura H, Koga M, Kikuchi T, Adachi E, Koibuchi T et al (2016) Rapid HIV-1 disease progression in individuals infected with a virus adapted to its host population. PLoS One 11:e0150397. https://doi.org/10.1371/journal.pone.0150397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawashima Y, Kuse N, Gatanaga H, Naruto T, Fujiwara M, Dohki S, Akahoshi T, Maenaka K, Goulder P, Oka S et al (2010) Long-term control of HIV-1 in hemophiliacs carrying slow-progressing allele HLA-B*5101. J Virol 84:7151–7160. https://doi.org/10.1128/JVI.00171-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang X, Huang X, Xia W, Li W, Zhang T, Wu H, Xu X, Yan H (2013) HLA-B*44 is associated with a lower viral set point and slow CD4 decline in a cohort of Chinese homosexual men acutely infected with HIV-1. Clin Vaccine Immunol 20:1048–1054. https://doi.org/10.1128/CVI.00015-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dong T, Zhang Y, Xu KY, Yan H, James I, Peng Y, Blais ME, Gaudieri S, Chen X, Lun W et al (2011) Extensive HLA-driven viral diversity following a narrow-source HIV-1 outbreak in rural China. Blood 118:98–106. https://doi.org/10.1182/blood-2010-06-291963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, Borkowsky W, Farthing C, Ho DD (1994) Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68:4650–4655

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB (1994) Virus-specific CD8 + cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 68:6103–6110

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Christie NM, Willer DO, Lobritz MA, Chan JK, Arts EJ, Ostrowski MA, Cochrane A, Luscher MA, MacDonald KS (2009) Viral fitness implications of variation within an immunodominant CD8 + T-cell epitope of HIV-1. Virology 388:137–146. https://doi.org/10.1016/j.virol.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  60. Leslie AJ, Pfafferott KJ, Chetty P, Draenert R, Addo MM, Feeney M, Tang Y, Holmes EC, Allen T, Prado JG et al (2004) HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 10:282–289. https://doi.org/10.1038/nm992

    Article  CAS  PubMed  Google Scholar 

  61. Schneidewind A, Brockman MA, Sidney J, Wang YE, Chen H, Suscovich TJ, Li B, Adam RI, Allgaier RL, Mothe BR et al (2008) Structural and functional constraints limit options for cytotoxic T-lymphocyte escape in the immunodominant HLA-B27-restricted epitope in human immunodeficiency virus type 1 capsid. J Virol 82:5594–5605. https://doi.org/10.1128/jvi.02356-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Setiawan LC, Gijsbers EF, van Nuenen AC, Kootstra NA (2015) Viral evolution in HLA-B27-restricted CTL epitopes in HIV-1 infected individuals. J Gen Virol. https://doi.org/10.1099/vir.0.000148

    Article  PubMed  Google Scholar 

  63. Ammaranond P, van Bockel DJ, Petoumenos K, McMurchie M, Finlayson R, Middleton MG, Davenport MP, Venturi V, Suzuki K, Gelgor L et al (2011) HIV immune escape at an immunodominant epitope in HLA-B*27-positive individuals predicts viral load outcome. J Immunol 186:479–488. https://doi.org/10.4049/jimmunol.0903227

    Article  CAS  PubMed  Google Scholar 

  64. Feeney ME, Tang Y, Roosevelt KA, Leslie AJ, McIntosh K, Karthas N, Walker BD, Goulder PJ (2004) Immune escape precedes breakthrough human immunodeficiency virus type 1 viremia and broadening of the cytotoxic T-lymphocyte response in an HLA-B27-positive long-term-nonprogressing child. J Virol 78:8927–8930. https://doi.org/10.1128/jvi.78.16.8927-8930.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Miura T, Brockman MA, Schneidewind A, Lobritz M, Pereyra F, Rathod A, Block BL, Brumme ZL, Brumme CJ, Baker B et al (2009) HLA-B57/B*5801 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte [corrected] recognition. J Virol 83:2743–2755. https://doi.org/10.1128/JVI.02265-08

    Article  CAS  PubMed  Google Scholar 

  66. Gijsbers EF, Feenstra KA, van Nuenen AC, Navis M, Heringa J, Schuitemaker H, Kootstra NA (2013) HIV-1 replication fitness of HLA-B*57/58:01 CTL escape variants is restored by the accumulation of compensatory mutations in gag. PLoS One 8:e81235. https://doi.org/10.1371/journal.pone.0081235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pant Pai N, Shivkumar S, Cajas JM (2012) Does genetic diversity of HIV-1 non-B subtypes differentially impact disease progression in treatment-naive HIV-1-infected individuals? A systematic review of evidence: 1996–2010. J Acquir Immune Defic Syndr 59:382–388. https://doi.org/10.1097/QAI.0b013e31824a0628

    Article  PubMed  Google Scholar 

  68. Kiwanuka N, Robb M, Laeyendecker O, Kigozi G, Wabwire-Mangen F, Makumbi FE, Nalugoda F, Kagaayi J, Eller M, Eller LA et al (2009) HIV-1 viral subtype differences in the rate of CD4 + T-cell decline among HIV seroincident antiretroviral naive persons in Rakai District, Uganda. J Acquir Immune Defic Syndrom. https://doi.org/10.1097/QAI.0b013e3181c98fc0

    Article  Google Scholar 

  69. Keller M, Lu Y, Lalonde RG, Klein MB (2009) Impact of HIV-1 viral subtype on CD4 + T-cell decline and clinical outcomes in antiretroviral naive patients receiving universal healthcare. Aids. https://doi.org/10.1097/QAD.0b013e328326f77f

    Article  PubMed  Google Scholar 

  70. Yuan R, Cheng H, Chen LS, Zhang X, Wang B (2016) Prevalence of different HIV-1 subtypes in sexual transmission in China: a systematic review and meta-analysis. Epidemiol Infect 144:2144–2153. https://doi.org/10.1017/s0950268816000212

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by mega projects of national science research for the 13th Five-Year Plan (2017ZX10201101), “Innovation Team Development Program 2016 (IRT_16R70)” of The Ministry of Education, and Natural Science Foundations (81871637,81371787,81701985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Shang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of Medical Research Ethics Committee of the First Affiliated Hospital of China Medical University.

Informed consent

All subjects provided informed consent for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Han, X., Zhang, H. et al. High polymorphism rates in well-known T cell epitopes restricted by protective HLA alleles during HIV infection are associated with rapid disease progression in early-infected MSM in China. Med Microbiol Immunol 208, 239–251 (2019). https://doi.org/10.1007/s00430-019-00585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-019-00585-x

Keywords

Navigation