Skip to main content

Advertisement

Log in

IL-17A plays an important role in protection induced by vaccination with fibronectin-binding domain of fibronectin-binding protein A against Staphylococcus aureus infection

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Fibronectin-binding protein A (FnBPA) of Staphylococcus aureus is a microbial surface component recognizing adhesive matrix molecules and has been known as one of the most important virulence factors involved in the initiation step of S. aureus infection. Therefore, it has been considered as a potential vaccine candidate. Previous studies have reported that vaccination with FnBPA protects animals against S. aureus infection. In this study, we demonstrated that vaccination with fibronectin-binding domain of FnBPA (FnBPA541-870) protects wild-type mice but not interleukin-17A (IL-17A)-deficient mice against S. aureus infection. Moderate levels of antigen-specific immunoglobulins were produced in the sera of vaccinated wild-type and IL-17A-deficient mice. The spleen cells of vaccinated mice produced IL-17A by stimulation with the antigen, and IL-17A mRNA expression was increased in the spleens and livers of vaccinated mice after infection. CXCL1 and CXCL2 mRNA expression was increased in the spleens, and myeloperoxidase (MPO) activity in the spleens and livers was increased in the vaccinated mice after infection. These results suggest that vaccination with FnBPA541-870 induces the IL-17A-producing cells and that IL-17A-mediated cellular immunity is involved in the protective effect on S. aureus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(27):520–532

    Article  CAS  PubMed  Google Scholar 

  2. Noskin GA, Rubin RJ, Schentag JJ, Kluytmans J, Hedbloom EC, Jacobson C, Smulders M, Gemmen E, Bharmal M (2007) National trends in Staphylococcus aureus infection rates: impact on economic burden and mortality over a 6-year period (1998–2003). Clin Infect Dis 45(9):1132–1140

    Article  PubMed  Google Scholar 

  3. Menichetti F (2005) Current and emerging serious Gram-positive infections. Clin Microbiol Infect Suppl 3:22–28

    Article  Google Scholar 

  4. Foster TJ, Höök M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6(12):484–488

    Article  CAS  PubMed  Google Scholar 

  5. Sottile J, Schwarzbauer J, Selegue J, Mosher DF (1991) Five type I modules of fibronectin form a functional unit that binds to fibroblasts and Staphylococcus aureus. J Biol Chem 266(20):12840–12843

    CAS  PubMed  Google Scholar 

  6. Schwarz-Linek U, Werner JM, Pickford AR, Gurusiddappa S, Kim JH, Pilka ES, Briggs JA, Gough TS, Höök M, Campbell ID, Potts JR (2003) Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423(6936):177–181

    Article  CAS  PubMed  Google Scholar 

  7. Peacock SJ, Foster TJ, Cameron BJ, Berendt AR (1999) Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 145(Pt 12):3477–3486

    Article  Google Scholar 

  8. Sinha B, François PP, Nüsse O, Foti M, Hartford OM, Vaudaux P, Foster TJ, Lew DP, Herrmann M, Krause KH (1999) Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. Cell Microbiol 1(2):101–117

    Article  CAS  PubMed  Google Scholar 

  9. Que YA, Haefliger JA, Piroth L, François P, Widmer E, Entenza JM, Sinha B, Herrmann M, Francioli P, Vaudaux P, Moreillon P (2005) Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med 201(10):1627–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brouillette E, Talbot BG, Malouin F (2003) The fibronectin-binding proteins of Staphylococcus aureus may promote mammary gland colonization in a lactating mouse model of mastitis. Infect Immun 71(4):2292–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Menzies BE, Kourteva Y, Kaiser AB, Kernodle DS (2002) Inhibition of staphylococcal wound infection and potentiation of antibiotic prophylaxis by a recombinant fragment of the fibronectin-binding protein of Staphylococcus aureus. J Infect Dis 185(7):937–943

    Article  CAS  Google Scholar 

  12. Minhas T, Ludlam HA, Wilks M, Tabaqchali S (1995) Detection by PCR and analysis of the distribution of a fibronectin-binding protein gene (fbn) among staphylococcal isolates. J Med Microbiol 42(2):96–101

    Article  CAS  PubMed  Google Scholar 

  13. Rasmussen G, Monecke S, Ehricht R, Söderquist B (2013) Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden. PLoS One 8(10):e77477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rennermalm A, Li YH, Bohaufs L, Jarstrand C, Brauner A, Brennan FR, Flock JI (2001) Antibodies against a truncated Staphylococcus aureus fibronectin-binding protein protect against dissemination of infection in the rat. Vaccine 19(25–26):3376–3383

    Article  CAS  PubMed  Google Scholar 

  15. Gaudreau MC, Lacasse P, Talbot BG (2007) Protective immune responses to a multi-gene DNA vaccine against Staphylococcus aureus. Vaccine 25(5):814–824

    Article  CAS  PubMed  Google Scholar 

  16. Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28(4):454–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Curtis MM, Way SS (2009) Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology 126(2):177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin L, Ibrahim AS, Xu X, Farber JM, Avanesian V, Baquir B, Fu Y, French SW, Edwards JE Jr, Spellberg B (2009) Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog 5(12):e1000703

    Article  PubMed  PubMed Central  Google Scholar 

  19. Narita K, Hu DL, Mori F, Wakabayashi K, Iwakura Y, Nakane A (2010) Role of interleukin-17A in cell-mediated protection against Staphylococcus aureus infection in mice immunized with the fibrinogen-binding domain of clumping factor A. Infect Immun 78(10):4234–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Narita K, Hu DL, Asano K, Nakane A (2015) Vaccination with non-toxic mutant toxic shock syndrome toxin-1 induces IL-17-dependent protection against Staphylococcus aureus infection. Pathog Dis 73(4):pii:ftv023

  21. Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, Sekikawa K, Asano M, Iwakura Y (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17(3):375–387

    Article  CAS  PubMed  Google Scholar 

  22. Omoe K, Ishikawa M, Shimoda Y, Hu DL, Ueda S, Shinagawa K (2002) Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates Harboring seg, seh, or sei genes. J Clin Microbiol 40(3):857–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakane A, Okamoto M, Asano M, Kohanawa M, Minagawa T (1995) Endogenous gamma interferon, tumor necrosis factor, and interleukin-6 in Staphylococcus aureus infection in mice. Infect Immun 63(4):1165–1172

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu DL, Omoe K, Sasaki S, Sashinami H, Sakuraba H, Yokomizo Y, Shinagawa K, Nakane A (2003) Vaccination with nontoxic mutant toxic shock syndrome toxin 1 protects against Staphylococcus aureus infection. J Infect Dis 188(5):743–752

    Article  CAS  PubMed  Google Scholar 

  25. Ikejima S, Sasaki S, Sashinami H, Mori F, Ogawa Y, Nakamura T, Abe Y, Wakabayashi K, Suda T, Nakane A (2005) Impairment of host resistance to Listeria monocytogenes infection in liver of db/db and ob/ob mice. Diabetes 54(1):182–189

    Article  CAS  PubMed  Google Scholar 

  26. Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12(1):49–62

    Article  CAS  PubMed  Google Scholar 

  27. Mamo W, Jonsson P, Flock JI, Lindberg M, Müller HP, Wadström T, Nelson L (1994) Vaccination against Staphylococcus aureus mastitis: immunological response of mice vaccinated with fibronectin-binding protein (FnBP-A) to challenge with S. aureus. Vaccine 12(11):988–992

    Article  CAS  PubMed  Google Scholar 

  28. Zuo QF, Cai CZ, Ding HL, Wu Y, Yang LY, Feng Q, Yang HJ, Wei ZB, Zeng H, Zou QM (2014) Identification of the immunodominant regions of Staphylococcus aureus fibronectin-binding protein A. PLoS One 9(4):e95338

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mitsdoerffer M, Lee Y, Jäger A, Kim HJ, Korn T, Kolls JK, Cantor H, Bettelli E, Kuchroo VK (2010) Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci USA 107(32):14292–14297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kolata JB, Kühbandner I, Link C, Normann N, Vu CH, Steil L, Weidenmaier C, Bröker BM (2015) The fall of a dogma? unexpected high T-Cell memory response to Staphylococcus aureus in humans. J Infect Dis 212(5):830–838

    Article  PubMed  Google Scholar 

  31. Desel C, Werninghaus K, Ritter M, Jozefowski K, Wenzel J, Russkamp N, Schleicher U, Christensen D, Wirtz S, Kirschning C, Agger EM, Prazeres da Costa C, Lang R (2013) The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PLoS One 8(1):e53531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin Y, Slight SR, Khader SA (2010) Th17 cytokines and vaccine-induced immunity. Semin Immunopathol 32(1):79–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Franchi L, Núñez G (2008) The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1β secretion but dispensable for adjuvant activity. Eur J Immunol 38(8):2085–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ross PJ, Sutton CE, Higgins S, Allen AC, Walsh K, Misiak A, Lavelle EC, McLoughlin RM, Mills KH (2013) Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog 9(4):e1003264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakada EM, Shan J, Kinyanjui MW, Fixman ED (2014) Adjuvant-dependent regulation of interleukin-17 expressing γδ T cells and inhibition of Th2 responses in allergic airways disease. Respir Res 15:90. doi:10.1186/s12931-014-0090-5

    Article  PubMed  PubMed Central  Google Scholar 

  36. Murphy AG, O’Keeffe KM, Lalor SJ, Maher BM, Mills KH, McLoughlin RM (2014) Staphylococcus aureus infection of mice expands a population of memory γδ T cells that are protective against subsequent infection. J Immunol 192(8):3697–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung AL, Cheng G, Modlin RL, Miller LS (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120(5):1762–1773

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, Fujikado N, Tanahashi Y, Akitsu A, Kotaki H, Sudo K, Nakae S, Sasakawa C, Iwakura Y (2009) Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30(1):108–119

    Article  CAS  PubMed  Google Scholar 

  39. Wang XY, Huang ZX, Chen YG, Lu X, Zhu P, Wen K, Fu N, Liu BY (2015) A multiple antigenic peptide mimicking peptidoglycan induced T cell responses to protect mice from systemic infection with Staphylococcus aureus. PLoS One 10(8):e0136888

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mancini F, Monaci E, Lofano G, Torre A, Bacconi M, Tavarini S, Sammicheli C, Arcidiacono L, Galletti B, Laera D, Pallaoro M, Tuscano G, Fontana MR, Bensi G, Grandi G, Rossi-Paccani S, Nuti S, Rappuoli R, De Gregorio E, Bagnoli F, Soldaini E, Bertholet S (2016) One dose of Staphylococcus aureus 4 C-Staph saccine formulated with a novel TLR7-dependent adjuvant rapidly protects mice through antibodies, effector CD4+ T cells, and IL-17A. PLoS One 11(1):e0147767

    Article  PubMed  PubMed Central  Google Scholar 

  41. Spellberg B, Ibrahim AS, Yeaman MR, Lin L, Fu Y, Avanesian V, Bayer AS, Filler SG, Lipke P, Otoo H, Edwards JE Jr (2008) The antifungal vaccine derived from the recombinant N terminus of Als3p protects mice against the bacterium Staphylococcus aureus. Infect Immun 76(10):4574–4580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brown AF, Murphy AG, Lalor SJ, Leech JM, O’Keeffe KM, Mac Aogáin M, O’Halloran DP, Lacey KA, Tavakol M, Hearnden CH, Fitzgerald-Hughes D, Humphreys H, Fennell JP, van Wamel WJ, Foster TJ, Geoghegan JA, Lavelle EC, Rogers TR, McLoughlin RM (2015) Memory Th1 cells are protective in invasive Staphylococcus aureus infection. PLoS Pathog 11(11):e1005226

    Article  PubMed  PubMed Central  Google Scholar 

  43. Murai M, Usui A, Seki K, Sakurada J, Masuda S (1992) Intracellular localization of Staphylococcus aureus within primary cultured mouse kidney cells. Microbiol Immunol 36(5):431–443

    Article  CAS  PubMed  Google Scholar 

  44. Kolls JK, Lindén A (2004) Interleukin-17 family members and inflammation. Immunity 21(4):467–476

    Article  CAS  PubMed  Google Scholar 

  45. van Kessel KP, Bestebroer J, van Strijp JA (2014) Neutrophil-mediated phagocytosis of Staphylococcus aureus. Front Immunol 5:467. doi:10.3389/fimmu.2014.00467

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI Grant numbers 23390100 (A.N.) and 26460517 (K.A.) and Grant for Hirosaki University Institutional Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Nakane.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narita, K., Asano, K. & Nakane, A. IL-17A plays an important role in protection induced by vaccination with fibronectin-binding domain of fibronectin-binding protein A against Staphylococcus aureus infection. Med Microbiol Immunol 206, 225–234 (2017). https://doi.org/10.1007/s00430-017-0499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-017-0499-9

Keywords

Navigation