Skip to main content
Log in

NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Borchers AT, Chang C, Gershwin ME, Gershwin LJ (2013) Respiratory syncytial virus—a comprehensive review. Clin Rev Allergy Immunol 45(3):331–379. doi:10.1007/s12016-013-8368-9

    Article  CAS  PubMed  Google Scholar 

  2. Feldman AS, He Y, Moore ML, Hershenson MB, Hartert TV (2015) Toward primary prevention of asthma. Reviewing the evidence for early-life respiratory viral infections as modifiable risk factors to prevent childhood asthma. Am J Respir Crit Care Med 191(1):34–44. doi:10.1164/rccm.201405-0901PP

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rossi GA, Colin AA (2015) Infantile respiratory syncytial virus and human rhinovirus infections: respective role in inception and persistence of wheezing. Eur Respir J 45(3):774–789. doi:10.1183/09031936.00062714

    Article  CAS  PubMed  Google Scholar 

  4. Sigurs N, Aljassim F, Kjellman B, Robinson PD, Sigurbergsson F, Bjarnason R, Gustafsson PM (2010) Asthma and allergy patterns over 18 years after severe RSV bronchiolitis in the first year of life. Thorax 65(12):1045–1052. doi:10.1136/thx.2009.121582

    Article  PubMed  Google Scholar 

  5. Vercelli D, Gozdz J, von Mutius E (2014) Innate lymphoid cells in asthma: when innate immunity comes in a Th2 flavor. Curr Opin Allergy Clin Immunol 14(1):29–34. doi:10.1097/ACI.0000000000000023

    Article  CAS  PubMed  Google Scholar 

  6. Kim BS, Wojno ED, Artis D (2013) Innate lymphoid cells and allergic inflammation. Curr Opin Immunol 25(6):738–744. doi:10.1016/j.coi.2013.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Milush JM, Long BR, Snyder-Cappione JE, Cappione AJ III, York VA, Ndhlovu LC, Lanier LL, Michaëlsson J, Nixon DF (2009) Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4. Blood 114(23):4823–4831. doi:10.1182/blood-2009-04-216374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wingett D, Nielson CP (2003) Divergence in NK cell and cyclic AMP regulation of T cell CD40L expression in asthmatic subjects. J Leukoc Biol 74(4):531–541

    Article  CAS  PubMed  Google Scholar 

  9. Werner JM, Busl E, Farkas SA, Schlitt HJ, Geissler EK, Hornung M (2011) DX5 + NKT cells display phenotypical and functional differences between spleen and liver as well as NK1.1-Balb/c and NK1.1 + C57Bl/6 mice. BMC Immunol 12:26. doi:10.1186/1471-2172-12-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Culley FJ (2009) Natural killer cells in infection and inflammation of the lung. Immunology 128(2):151–163. doi:10.1111/j.1365-2567.2009.03167.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karimi K, Forsythe P (2013) Natural killer cells in asthma. Front Immunol 4:159. doi:10.3389/fimmu.2013.00159.eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hussell T, Openshaw PJ (2000) IL-12-activated NK cells reduce lung eosinophilia to the attachment protein of respiratory syncytial virus but do not enhance the severity of illness in CD8 T cell-immunodeficient conditions. J Immunol 165(12):7109–7115

    Article  CAS  PubMed  Google Scholar 

  13. Li F, Zhu H, Sun R, Wei H, Tian Z (2012) Natural killer cells are involved in acute lung immune injury caused by respiratory syncytial virus infection. J Virol 86(4):2251–2258. doi:10.1128/JVI.06209-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harker JA, Godlee A, Wahlsten JL, Lee DC, Thorne LG, Sawant D, Tregoning JS, Caspi RR, Bukreyev A, Collins PL, Openshaw PJ (2010) Interleukin 18 coexpression during respiratory syncytial virus infection results in enhanced disease mediated by natural killer cells. J Virol 84(8):4073–4082. doi:10.1128/JVI.02014-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mathias CB (2015) Natural killer cells in the development of asthma. Curr Allergy Asthma Rep 15(2):500. doi:10.1007/s11882-014-0500-2

    Article  PubMed  Google Scholar 

  16. Ple C, Barrier M, Amniai L, Marquillies P, Bertout J, Tsicopoulos A, Walzer T, Lassalle P, Duez C (2010) Natural killer cells accumulate in lung-draining lymph nodes and regulate airway eosinophilia in a murine model of asthma. Scand J Immunol 72(2):118–127. doi:10.1111/j.1365-3083.2010.02419.x

    Article  CAS  PubMed  Google Scholar 

  17. Mathias CB, Guernsey LA, Zammit D, Brammer C, Wu CA, Thrall RS, Aguila HL (2014) Pro-inflammatory role of natural killer cells in the development of allergic airway disease. Clin Exp Allergy 44(4):589–601. doi:10.1111/cea.12271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei H, Zhang J, Xiao W, Feng J, Sun R, Tian Z (2005) Involvement of human natural killer cells in asthma pathogenesis: natural killer 2 cells in type 2 cytokine predominance. J Allergy Clin Immunol 115(4):841–847

    Article  CAS  PubMed  Google Scholar 

  19. Farhadi N, Lambert L, Triulzi C, Openshaw PJ, Guerra N, Culley FJ (2014) Natural killer cell NKG2D and granzyme B are critical for allergic pulmonary inflammation. J Allergy Clin Immunol 133(3):827–835.e3. doi:10.1016/j.jaci.2013.09.048

  20. Zhang Z, Burnley P, Coder B, Su DM (2012) Insights on FoxN1 biological significance and usages of the “nude” mouse in studies of T-lymphopoiesis. Int J Biol Sci 8(8):1156–1167. doi:10.7150/ijbs.5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou J, Yang XQ, Fu Z, Zhao XD, Jiang LP, Wang LJ, Cui YX (2008) Increased pathogenesis and inflammation of airways from respiratory syncytial virus infection in T cell deficient nude mice. Med Microbiol Immunol 197(4):345–351

    Article  CAS  PubMed  Google Scholar 

  22. Long X, Li S, Xie J, Li W, Zang N, Ren L, Deng Y, Xie X, Wang L, Fu Z, Liu E (2015) MMP-12-mediated by SARM-TRIF signaling pathway contributes to IFN-γ-independent airway inflammation and AHR post RSV infection in nude mice. Respir Res 16:11. doi:10.1186/s12931-015-0176-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zang N, Li S, Li W, Xie X, Ren L, Long X, Xie J, Deng Y, Fu Z, Xu F, Liu E (2015) Resveratrol suppresses persistent airway inflammation and hyperresponsivess might partially via nerve growth factor in respiratory syncytial virus-infected mice. Int Immunopharmacol 28(1):121–128. doi:10.1016/j.intimp.2015.05.031

    Article  CAS  PubMed  Google Scholar 

  24. Harker JA, Yamaguchi Y, Culley FJ, Tregoning JS, Openshaw PJ (2014) Delayed sequelae of neonatal respiratory syncytial virus infection are dependent on cells of the innate immune system. J Virol 88(1):604–611. doi:10.1128/JVI.02620-13

    Article  PubMed  PubMed Central  Google Scholar 

  25. Deng Y, Chen W, Zang N, Li S, Luo Y, Ni K, Wang L, Xie X, Liu W, Yang X, Fu Z, Liu E (2011) The antiasthma effect of neonatal BCG vaccination does not depend on the Th17/Th1 but IL-17/IFN-γ balance in a BALB/c mouse asthma model. J Clin Immunol 31(3):419–429. doi:10.1007/s10875-010-9503-5

    Article  CAS  PubMed  Google Scholar 

  26. Trung LQ, Espinoza JL, Takami A, Nakao S (2013) Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition. PLoS ONE 8(1):e55183. doi:10.1371/journal.pone.0055183

    Article  CAS  Google Scholar 

  27. Estripeaut D, Torres JP, Somers CS, Tagliabue C, Khokhar S, Bhoj VG, Grube SM, Wozniakowski A, Gomez AM, Ramilo O, Jafri HS, Mejias A (2008) Respiratory syncytial virus persistence in the lungs correlates with airway hyperreactivity in the mouse model. J Infect Dis 198(10):1435–1443. doi:10.1086/592714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Y, Zhang S, Li DW, Jiang SJ (2013) Efficacy of anti-interleukin-5 therapy with mepolizumab in patients with asthma: a meta-analysis of randomized placebo-controlled trials. PLoS ONE 8(3):e59872. doi:10.1371/journal.pone.0059872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J, Wilkins HJ, Henkel T, Nair P, Res-5-0010 Study Group (2011) Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med 184(10):1125–1132. doi:10.1164/rccm.201103-0396OC

    Article  CAS  PubMed  Google Scholar 

  30. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, Harris JM, Scheerens H, Wu LC, Su Z, Mosesova S, Eisner MD, Bohen SP, Matthews JG (2011) Lebrikizumab treatment in adults with asthma. N Engl J Med 365(12):1088–1098. doi:10.1056/NEJMoa1106469

    Article  CAS  PubMed  Google Scholar 

  31. Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, Wang L, Kirkesseli S, Rocklin R, Bock B, Hamilton J, Ming JE, Radin A, Stahl N, Yancopoulos GD, Graham N, Pirozzi G (2013) Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 368(26):2455–2466. doi:10.1056/NEJMoa1304048

    Article  CAS  PubMed  Google Scholar 

  32. Noonan M, Korenblat P, Mosesova S, Scheerens H, Arron JR, Zheng Y, Putnam WS, Parsey MV, Bohen SP, Matthews JG (2013) Dose-ranging study of lebrikizumab in asthmatic patients not receiving inhaled steroids. J Allergy Clin Immunol 132(3):567–574.e12. doi:10.1016/j.jaci.2013.03.051

  33. Smith SG, Chen R, Kjarsgaard M, Huang C, Oliveria JP, O’Byrne PM, Gauvreau GM, Boulet LP, Lemiere C, Martin J, Nair P, Sehmi R (2015) Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J Allergy Clin Immunol. doi:10.1016/j.jaci.2015.05.037

    Google Scholar 

  34. Ozyigit LP, Morita H, Akdis M (2015) Innate lymphocyte cells in asthma phenotypes. Clin Transl Allergy 5:23. doi:10.1186/s13601-015-0068-5

    Article  PubMed  PubMed Central  Google Scholar 

  35. Agache I, Sugita K, Morita H, Akdis M, Akdis CA (2015) The complex type 2 endotype in allergy and asthma: from laboratory to bedside. Curr Allergy Asthma Rep 15(6):29. doi:10.1007/s11882-015-0529-x

    Article  PubMed  Google Scholar 

  36. Kim EY, Battaile JT, Patel AC, You Y, Agapov E, Grayson MH, Benoit LA, Byers DE, Alevy Y, Tucker J, Swanson S, Tidwell R, Tyner JW, Morton JD, Castro M, Polineni D, Patterson GA, Schwendener RA, Allard JD, Peltz G, Holtzman MJ (2008) Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat Med 14(6):633–640. doi:10.1038/nm1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu CC, Chen JK (2010) Resveratrol enhances perforin expression and NK cell cytotoxicity through NKG2D-dependent pathways. J Cell Physiol 223(2):343–351. doi:10.1002/jcp.22043

    CAS  PubMed  Google Scholar 

  38. Li Q, Huyan T, Ye LJ, Li J, Shi JL, Huang QS (2014) Concentration-dependent biphasic effects of resveratrol on human natural killer cells in vitro. J Agric Food Chem 62(45):10928–10935. doi:10.1021/jf502950u

    Article  CAS  PubMed  Google Scholar 

  39. Chen G, Tang J, Ni Z, Chen Q, Li Z, Yang W, Din J, Luo X, Wang X (2015) Antiasthmatic effects of resveratrol in ovalbumin-induced asthma model mice involved in the upregulation of PTEN. Biol Pharm Bull 38(4):507–513. doi:10.1248/bpb.b14-00610

    Article  PubMed  Google Scholar 

  40. Lin HC, Chen YF, Hsu WH, Yang CW, Kao CH, Tsai TF (2012) Resveratrol helps recovery from fatty liver and protects against hepatocellular carcinoma induced by hepatitis B virus X protein in a mouse model. Cancer Prev Res (Phila) 5(7):952–962. doi:10.1158/1940-6207.CAPR-12-0001

    Article  CAS  Google Scholar 

  41. Sato F, Martinez NE, Shahid M, Rose JW, Carlson NG, Tsunoda I (2013) Resveratrol exacerbates both autoimmune and viral models of multiple sclerosis. Am J Pathol 183(5):1390–1396. doi:10.1016/j.ajpath.2013.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aktas E, Akdis M, Bilgic S, Disch R, Falk CS, Blaser K, Akdis C, Deniz G (2005) Different natural killer (NK) receptor expression and immunoglobulin E (IgE) regulation by NK1 and NK2 cells. Clin Exp Immunol 140:301–309. doi:10.1111/j.1365-2249.2005.02777.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scordamaglia F, Balsamo M, Scordamaglia A, Moretta A, Mingari MC, Canonica GW, Moretta L, Vitale M (2008) Perturbations of natural killer cell regulatory functions in respiratory allergic diseases. J Allergy Clin Immunol 121:479–485. doi:10.1016/j.JACI.2007.09.047

    Article  CAS  PubMed  Google Scholar 

  44. Nishikado H, Mukai K, Kawano Y, Minegishi Y, Karasuyama H (2011) NK cell-depleting anti-asialo GM1 antibody exhibits a lethal off-target effect on basophils in vivo. J Immunol 186:5766–5771. doi:10.4049/jimmunol.1100370

    Article  CAS  PubMed  Google Scholar 

  45. Slifka MK, Pagarigan RR, Whitton JL (2000) NK markers are expressed on a high percentage of virus-specific CD8+ and CD4+ T cells. J Immunol 164(4):2009–2015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Numbers: 81470208, 81170010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enmei Liu.

Ethics declarations

Conflict of interest

No potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article. The sponsor had no role in the design of the study, in the collection and analysis of the data, or in the preparation of the manuscript. All authors have no any relevant competing interests.

Informed consent

Informed consent was obtained from all individual participants included in the study. All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

430_2016_459_MOESM1_ESM.docx

Supplementary data 1 Resveratrol decreased T cells in BALB/c mice. BALB/c mice were divided into three groups: control: mock-infected and PBS-treated mice; RSV: RSV-infected and PBS-treated mice; RSV+RES: RSV-infected and resveratrol-treated mice. Resveratrol was given from day 14 to day 20. Diseases parameters were assessed on day 21. Graphs are represented as the mean±SEM. Data are representative of two independent experiments performed on five animals per group. ***, P< 0.001 shown comparing the control group with the RSV group. ^^^ P< 0.001 shown comparing the RSV group with the RSV+RES group. (DOCX 73 kb)

430_2016_459_MOESM2_ESM.docx

Supplementary data 2 The persistent airway inflammation and AHR during the later stage of RSV infection were not decreased following basophils depletion in nude mice. Nude mice were divided into three groups: control: mock-infected and PBS-treated mice; RSV: RSV-infected and PBS-treated mice; RSV+anti-anti-FcεR1: RSV-infected and anti-FcεR1 (MAR1)-treated mice. PBS or antibodies were administrated on days 14, 17 and 20. Disease parameters were assessed on day 21. Levels of IL-4, IL-5, IL-13 (A), airway inflammatory cells in BALF (B) and AHR in response to methacholine (C) were not suppressed after basophils were depleted. Values are expressed as means ± SEM. Data are representative of two independent experiments performed on 3–5 animals per group. *, **, ***, P< 0.05, 0.01, 0.001 shown comparing the control group with the RSV group. ^,^^, P<0.05, 0.01 shown comparing the control group with the RSV+ anti-anti-FcεR1 group. (DOCX 102 kb)

430_2016_459_MOESM3_ESM.docx

Supplementary data 3 The persistent airway inflammation and AHR during the later stage of RSV infection were not decreased following basophils or CD8 + T cells depletion in BALB/c mice. BALB/c mice were divided into four groups: control: mock-infected and PBS-treated mice; RSV: RSV-infected and PBS-treated mice; RSV+anti-anti-FcεR1: RSV-infected and anti-FcεR1 (MAR1)-treated mice; RSV+anti-CD8: RSV-infected and anti-CD8 antibody-treated mice. PBS or antibodies were administrated on days 14, 17 and 20. Disease parameters were assessed on day 21. Levels of IL-4, IL-5, IL-13 (A), airway inflammatory cells in BALF (B) and AHR in response to methacholine (C) were not suppressed after basophils or CD8+ T cells were depleted. Values are expressed as means ± SEM. Data are representative of two independent experiments performed on 3–10 animals per group. *, **, ***, P< 0.05, 0.01, 0.001 shown comparing the control group with the RSV group. ^,^^, ^^^, P<0.05, 0.01, 0.001 shown comparing the control group with the RSV+ anti-anti-FcεR1 group. #, ##, ###, P<0.05, 0.01, 0.001 shown comparing the control group with the RSV+anti-CD8 group. (DOCX 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, X., Xie, J., Zhao, K. et al. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice. Med Microbiol Immunol 205, 459–470 (2016). https://doi.org/10.1007/s00430-016-0459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-016-0459-9

Keywords

Navigation