Skip to main content

Advertisement

Log in

Evidence for a Pneumocystis carinii Flo8-like transcription factor: insights into organism adhesion

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Pneumocystis carinii (Pc) adhesion to alveolar epithelial cells is well established and is thought to be a prerequisite for the initiation of Pneumocystis pneumonia. Pc binding events occur in part through the major Pc surface glycoprotein Msg, as well as an integrin-like molecule termed PcInt1. Recent data from the Pc sequencing project also demonstrate DNA sequences homologous to other genes important in Candida spp. binding to mammalian host cells, as well as organism binding to polystyrene surfaces and in biofilm formation. One of these genes, flo8, a transcription factor needed for downstream cAMP/PKA-pathway-mediated activation of the major adhesion/flocculin Flo11 in yeast, was cloned from a Pc cDNA library utilizing a partial sequence available in the Pc genome database. A CHEF blot of Pc genomic DNA yielded a single band providing evidence this gene is present in the organism. BLASTP analysis of the predicted protein demonstrated 41 % homology to the Saccharomyces cerevisiae Flo8. Northern blotting demonstrated greatest expression at pH 6.0–8.0, pH comparable to reported fungal biofilm milieu. Western blot and immunoprecipitation assays of PcFlo8 protein in isolated cyst and tropic life forms confirmed the presence of the cognate protein in these Pc life forms. Heterologous expression of Pcflo8 cDNA in flo8Δ-deficient yeast strains demonstrated that the Pcflo8 was able to restore yeast binding to polystyrene and invasive growth of yeast flo8Δ cells. Furthermore, Pcflo8 promoted yeast binding to HEK293 human epithelial cells, strengthening its functional classification as a Flo8 transcription factor. Taken together, these data suggest that PcFlo8 is expressed by Pc and may exert activity in organism adhesion and biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Pc:

Pneumocystis carinii

RACE:

Rapid amplification of cDNA ends

ANOVA:

Analysis of variance

SC:

Synthetic complete media

CHEF:

Contour-clamped homogeneous electric field

References

  1. Thomas CF Jr, Limper AH (2004) Pneumocystis pneumonia. New Engl J med 350(24):2487–2498. doi:10.1056/NEJMra032588

    Article  CAS  PubMed  Google Scholar 

  2. Sloand E, Laughon B, Armstrong M, Bartlett MS, Blumenfeld W, Cushion M, Kalica A, Kovacs JA, Martin W, Pitt E et al (1993) The challenge of Pneumocystis carinii culture. J Eukaryot Microbiol 40(2):188–195

    Article  CAS  PubMed  Google Scholar 

  3. Kottom TJ, Kohler JR, Thomas CF Jr, Fink GR, Limper AH (2003) Lung epithelial cells and extracellular matrix components induce expression of Pneumocystis carinii STE20, a gene complementing the mating and pseudohyphal growth defects of STE20 mutant yeast. Infect Immun 71(11):6463–6471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kottom TJ, Limper AH (2013) The Pneumocystis Ace2 transcription factor regulates cell wall-remodeling genes and organism virulence. J Biol Chem 288(33):23893–23902. doi:10.1074/jbc.M113.471243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cushion MT, Collins MS (2011) Susceptibility of Pneumocystis to echinocandins in suspension and biofilm cultures. Antimicrob Agents Chemother 55(10):4513–4518. doi:10.1128/AAC.00017-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cushion MT, Collins MS, Linke MJ (2009) Biofilm formation by Pneumocystis spp. Eukaryot Cell 8(2):197–206. doi:10.1128/EC.00202-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Reynolds TB, Fink GR (2001) Bakers’ yeast, a model for fungal biofilm formation. Science 291(5505):878–881. doi:10.1126/science.291.5505.878

    Article  CAS  PubMed  Google Scholar 

  8. Li F, Palecek SP (2003) EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell 2(6):1266–1273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cao F, Lane S, Raniga PP, Lu Y, Zhou Z, Ramon K, Chen J, Liu H (2006) The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Mol Biol Cell 17(1):295–307. doi:10.1091/mbc.E05-06-0502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Krajicek BJ, Kottom TJ, Villegas L, Limper AH (2010) Characterization of the PcCdc42 small G protein from Pneumocystis carinii, which interacts with the PcSte20 life cycle regulatory kinase. Am J Physiol Lung Cell Mol Physiol 298(2):L252–L260. doi:10.1152/ajplung.00191.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Burgess JW, Kottom TJ, Limper AH (2008) Pneumocystis carinii exhibits a conserved meiotic control pathway. Infect Immun 76(1):417–425. doi:10.1128/IAI.00986-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Thomas CF, Anders RA, Gustafson MP, Leof EB, Limper AH (1998) Pneumocystis carinii contains a functional cell-division-cycle Cdc2 homologue. Am J Respir Cell Mol Biol 18(3):297–306. doi:10.1165/ajrcmb.18.3.3122

    Article  CAS  PubMed  Google Scholar 

  13. Roberts RL, Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8(24):2974–2985

    Article  CAS  PubMed  Google Scholar 

  14. Pan X, Heitman J (2002) Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol 22(12):3981–3993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Conner J, Liu Z (2000) LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proc Natl Acad Sci USA 97(23):12902–12907. doi:10.1073/pnas.230352397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Emes RD, Ponting CP (2001) A new sequence motif linking lissencephaly, treacher collins and oral-facial-digital type 1 syndromes, microtubule dynamics and cell migration. Hum Mol Genet 10(24):2813–2820

    Article  CAS  PubMed  Google Scholar 

  17. Kim TS, Kim HY, Yoon JH, Kang HS (2004) Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression. Mol Cell Biol 24(21):9542–9556. doi:10.1128/MCB.24.21.9542-9556.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kottom TJ, Han J, Zhang Z, Limper AH (2011) Pneumocystis carinii expresses an active Rtt109 histone acetyltransferase. Am J Respir Cell Mol Biol 44(6):768–776. doi:10.1165/rcmb.2009-0443OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kottom TJ, Limper AH (2004) Pneumocystis carinii cell wall biosynthesis kinase gene CBK1 is an environmentally responsive gene that complements cell wall defects of cbk-deficient yeast. Infect Immun 72(8):4628–4636. doi:10.1128/IAI.72.8.4628-4636.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kottom TJ, Thomas CF Jr, Limper AH (2001) Characterization of Pneumocystis carinii PHR1, a pH-regulated gene important for cell wall Integrity. J Bacteriol 183(23):6740–6745. doi:10.1128/JB.183.23.6740-6745.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ramage G, Rajendran R, Sherry L, Williams C (2012) Fungal biofilm resistance. Int J Microbiol 2012:528521. doi:10.1155/2012/528521

    Article  PubMed Central  PubMed  Google Scholar 

  22. Limper AH, Thomas CF Jr, Anders RA, Leof EB (1997) Interactions of parasite and host epithelial cell cycle regulation during Pneumocystis carinii pneumonia. J Lab Clini Med 130(2):132–138

    Article  CAS  Google Scholar 

  23. Kottom TJ, Limper AH (2000) Cell wall assembly by Pneumocystis carinii. Evidence for a unique gsc-1 subunit mediating beta -1,3-glucan deposition. J Biol Chem 275(51):40628–40634. doi:10.1074/jbc.M002103200

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi O, Suda H, Ohtani T, Sone H (1996) Molecular cloning and analysis of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. Mol Genet Genomics 251(6):707–715

    CAS  Google Scholar 

  25. Fichtner L, Schulze F, Braus GH (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol 66(5):1276–1289. doi:10.1111/j.1365-2958.2007.06014.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18(5):1257–1269. doi:10.1093/emboj/18.5.1257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Li Y, Su C, Mao X, Cao F, Chen J (2007) Roles of Candida albicans Sfl1 in hyphal development. Eukaryot Cell 6(11):2112–2121. doi:10.1128/EC.00199-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Singh B, Fleury C, Jalalvand F, Riesbeck K (2012) Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 36(6):1122–1180. doi:10.1111/j.1574-6976.2012.00340.x

    Article  CAS  PubMed  Google Scholar 

  29. Yang W, Yan L, Wu C, Zhao X, Tang J (2014) Fungal invasion of epithelial cells. Microbiol Res. doi:10.1016/j.micres.2014.02.013

    Google Scholar 

  30. Kelly MN, Shellito JE (2010) Current understanding of Pneumocystis immunology. Future Microbiol 5(1):43–65. doi:10.2217/fmb.09.116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ahuja J, Kanne JP (2014) Thoracic infections in immunocompromised patients. Radiol Clin North Am 52(1):121–136. doi:10.1016/j.rcl.2013.08.010

    Article  PubMed  Google Scholar 

  32. Limper AH, Edens M, Anders RA, Leof EB (1998) Pneumocystis carinii inhibits cyclin-dependent kinase activity in lung epithelial cells. J Clin Invest 101(5):1148–1155. doi:10.1172/JCI659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kottom TJ, Kennedy CC, Limper AH (2008) Pneumocystis PCINT1, a molecule with integrin-like features that mediates organism adhesion to fibronectin. Mol Microbiol 67(4):747–761. doi:10.1111/j.1365-2958.2007.06093.x

    Article  CAS  PubMed  Google Scholar 

  34. Gale CA, Bendel CM, McClellan M, Hauser M, Becker JM, Berman J, Hostetter MK (1998) Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279(5355):1355–1358

    Article  CAS  PubMed  Google Scholar 

  35. Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci USA 97(22):12158–12163. doi:10.1073/pnas.220420397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Li F, Palecek SP (2008) Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 154(Pt 4):1193–1203. doi:10.1099/mic.0.2007/013789-0

    Article  CAS  PubMed  Google Scholar 

  37. Limper AH (1991) Parasitic adherence and host responses in the development of Pneumocystis carinii pneumonia. Semin Respir Infect 6(1):19–26

    CAS  PubMed  Google Scholar 

  38. Limper AH, Martin WJ 2nd (1990) Pneumocystis carinii: inhibition of lung cell growth mediated by parasite attachment. J Clin Invest 85(2):391–396. doi:10.1172/JCI114451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Campbell WG Jr (1972) Ultrastructure of Pneumocystis in human lung. Life cycle in human pneumocystosis. Archi Pathol 93(4):312–324

    Google Scholar 

  40. Itatani CA (1996) Ultrastructural morphology of intermediate forms and forms suggestive of conjugation in the life cycle of Pneumocystis carinii. J Parasitol 82(1):163–171

    Article  CAS  PubMed  Google Scholar 

  41. Long EG, Smith JS, Meier JL (1986) Attachment of Pneumocystis carinii to rat pneumocytes. Lab Invest 54(6):609–615

    CAS  PubMed  Google Scholar 

  42. Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73(2):310–347. doi:10.1128/MMBR.00041-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108. doi:10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  44. Murga R, Forster TS, Brown E, Pruckler JM, Fields BS, Donlan RM (2001) Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 147(Pt 11):3121–3126

    Article  CAS  PubMed  Google Scholar 

  45. Snowden JN, Beaver M, Beenken K, Smeltzer M, Horswill AR, Kielian T (2013) Staphylococcus aureus sarA regulates inflammation and colonization during central nervous system biofilm formation. PLoS ONE 8(12):e84089. doi:10.1371/journal.pone.0084089

    Article  PubMed Central  PubMed  Google Scholar 

  46. Chandra J, Pearlman E, Ghannoum MA (2014) Animal models to investigate fungal biofilm formation. Methods Mol Biol 1147:141–157. doi:10.1007/978-1-4939-0467-9_10

    Article  CAS  PubMed  Google Scholar 

  47. Nett JE (2014) Future directions for anti-biofilm therapeutics targeting Candida. Expert Rev Anti Infect Ther 12(3):375–382. doi:10.1586/14787210.2014.885838

    Article  CAS  PubMed  Google Scholar 

  48. Stichternoth C, Ernst JF (2009) Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Appl Environ Microbiol 75(11):3663–3672. doi:10.1128/AEM.00098-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were funded by the Mayo Foundation, the Walter and Leonore Annenberg Foundation, and NIH grant R01-HL62150 TO AHL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Limper.

Ethics declarations

Conflict of interest

Neither T.J.K. nor A.H.L. have any financial or other conflicts of interest with any of the research findings reported in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kottom, T.J., Limper, A.H. Evidence for a Pneumocystis carinii Flo8-like transcription factor: insights into organism adhesion. Med Microbiol Immunol 205, 73–84 (2016). https://doi.org/10.1007/s00430-015-0428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0428-8

Keywords

Navigation