Skip to main content

Advertisement

Log in

Bacterial TIR-containing proteins and host innate immune system evasion

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The innate immune system provides the first line of host defence against invading pathogens. Key to upregulation of the innate immune response are Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns (PAMPs) and trigger a signaling pathway culminating in the production of inflammatory mediators. Central to this TLR signaling pathway are heterotypic protein–protein interactions mediated through Toll/interleukin-1 receptor (TIR) domains found in both the cytoplasmic regions of TLRs and adaptor proteins. Pathogenic bacteria have developed a range of ingenuous strategies to evade the host immune mechanisms. Recent work has identified a potentially novel evasion mechanism involving bacterial TIR domain proteins. Such domains have been identified in a wide range of pathogenic bacteria, and there is evidence to suggest that they interfere directly with the TLR signaling pathway and thus inhibit the activation of NF-κB. The individual TIR domains from the pathogenic bacteria Salmonella enterica serovar Enteritidis, Brucella sp, uropathogenic E. coli and Yersinia pestis have been analyzed in detail. The individual bacterial TIR domains from these pathogenic bacteria seem to differ in their modes of action and their roles in virulence. Here, we review the current state of knowledge on the possible roles and mechanisms of action of the bacterial TIR domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  2. Fritz JH, Le Bourhis L, Sellge G, Magalhaes JG, Fsihi H, Kufer TA, Collins C, Viala J, Ferrero RL, Girardin SE et al (2007) Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26:445–459

    Article  PubMed  CAS  Google Scholar 

  3. Kumar H, Kawai T, Akira S (2009) Pathogen recognition in the innate immune response. Biochem J 420:1–16

    Article  PubMed  CAS  Google Scholar 

  4. Gay NJ, Gangloff M (2007) Structure and function of Toll receptors and their ligands. Annu Rev Biochem 76:141–165

    Article  PubMed  CAS  Google Scholar 

  5. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  6. Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279

    Article  PubMed  CAS  Google Scholar 

  7. Gay NJ, Keith FJ (1991) Drosophila Toll and IL-1 receptor. Nature 351:355–356

    Article  PubMed  CAS  Google Scholar 

  8. Triantafilou M, Gamper FGJ, Haston RM, Mouratis MA, Morath S, Hartung T, Triantafilou K (2006) Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem 281:31002–31011

    Article  PubMed  CAS  Google Scholar 

  9. Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DCG, Monks BG, McKnight CJ, Lamphier MS, Duprex WP et al (2007) Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 8:772–779

    Article  PubMed  CAS  Google Scholar 

  10. O’Neill LAJ, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364

    Article  PubMed  Google Scholar 

  11. Núñez Miguel R, Wong J, Westoll JF, Brooks HJ, O’Neill LAJ, Gay NJ, Bryant CE, Monie TP (2007) A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS One 2:e788

    Article  PubMed  Google Scholar 

  12. Brown V, Brown RA, Ozinsky A, Hesselberth JR, Fields S (2006) Binding specificity of Toll-like receptor cytoplasmic domains. Eur J Immunol 36:742–753

    Article  PubMed  CAS  Google Scholar 

  13. Horng T, Barton GM, Flavell RA, Medzhitov R (2002) The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420:329–333

    Article  PubMed  CAS  Google Scholar 

  14. Rowe DC, McGettrick AF, Latz E, Monks BG, Gay NJ, Yamamoto M, Akira S, O’Neill LA, Fitzgerald KA, Golenbock DT (2006) The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci USA 103:6299–6304

    Article  PubMed  CAS  Google Scholar 

  15. Carty M, Goodbody R, Schröder M, Stack J, Moynagh PN, Bowie AG (2006) The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7:1074–1081

    Article  PubMed  CAS  Google Scholar 

  16. Khan JA, Brint EK, O’Neill LAJ, Tong L (2004) Crystal structure of the Toll/interleukin-1 receptor domain of human IL-1RAPL. J Biol Chem 279:31664–31670

    Article  PubMed  CAS  Google Scholar 

  17. Slack JL, Schooley K, Bonnert TP, Mitcham JL, Qwarnstrom EE, Sims JE, Dower SK (2000) Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways. J Biol Chem 275:4670–4678

    Article  PubMed  CAS  Google Scholar 

  18. Poltorak A, He X, Smirnova I, Liu MY, van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  19. Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L (2000) Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408:111–115

    Article  PubMed  CAS  Google Scholar 

  20. Nyman T, Stenmark P, Flodin S, Johansson I, Hammarström M, Nordlund P (2008) The crystal structure of the human toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. J Biol Chem 283:11861–11865

    Article  PubMed  CAS  Google Scholar 

  21. Ohnishi H, Tochio H, Kato Z, Orii KE, Li A, Kimura T, Hiroaki H, Kondo N, Shirakawa M (2009) Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. Proc Natl Acad Sci USA 106:10260–10265

    Article  PubMed  CAS  Google Scholar 

  22. Valkov E, Stamp A, Dimaio F, Baker D, Verstak B, Roversi P, Kellie S, Sweet MJ, Mansell A, Gay NJ et al (2011) Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. Proc Natl Acad Sci USA 108:14879–14884

    Article  PubMed  CAS  Google Scholar 

  23. Watters TM, Kenny EF, O’Neill LAJ (2007) Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85:411–419

    Article  PubMed  CAS  Google Scholar 

  24. Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M (2002) Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun 70:4092–4098

    Article  PubMed  CAS  Google Scholar 

  25. Nigou J, Zelle-Rieser C, Gilleron M, Thurnher M, Puzo G (2001) Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 166:7477–7485

    PubMed  CAS  Google Scholar 

  26. Stack J, Haga IR, Schröder M, Bartlett NW, Maloney G, Reading PC, Fitzgerald KA, Smith GL, Bowie AG (2005) Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201:1007–1018

    Article  PubMed  CAS  Google Scholar 

  27. Bowie A, Kiss-Toth E, Symons JA, Smith GL, Dower SK, O’Neill LA (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci USA 97:10162–10167

    Article  PubMed  CAS  Google Scholar 

  28. Harte MT, Haga IR, Maloney G, Gray P, Reading PC, Bartlett NW, Smith GL, Bowie A, O’Neill LAJ (2003) The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197:343–351

    Article  PubMed  CAS  Google Scholar 

  29. Spear AM, Loman NJ, Atkins HS, Pallen MJ (2009) Microbial TIR domains: not necessarily agents of subversion? Trends Microbiol 17:393–398

    Article  PubMed  CAS  Google Scholar 

  30. Lang T, Lo C, Skinner N, Locarnini S, Visvanathan K, Mansell A (2011) The Hepatitis B e antigen (HBeAg) targets and suppresses activation of the Toll-like receptor signaling pathway. J Hepatol. doi:10.1016/j.jhep.2010.12.042

  31. Ahmad H, Gubbels R, Ehlers E, Meyer F, Waterbury T, Lin R, Zhang L (2011) Kaposi sarcoma-associated herpesvirus degrades cellular Toll-interleukin-1 receptor domain-containing adaptor-inducing beta-interferon (TRIF). J Biol Chem 286:7865–7872

    Article  PubMed  CAS  Google Scholar 

  32. Newman RM, Salunkhe P, Godzik A, Reed JC (2006) Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins. Infect Immun 74:594–601

    Article  PubMed  CAS  Google Scholar 

  33. Low LY, Mukasa T, Reed JC, Pascual J (2007) Characterization of a TIR-like protein from Paracoccus denitrificans. Biochem Biophys Res Comm 356:481–486

    Article  PubMed  CAS  Google Scholar 

  34. Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N, Rodriguez N, Wagner H et al (2008) Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 14:399–406

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Q, Zmasek CM, Cai X, Godzik A (2011) TIR domain-containing adaptor SARM is a late addition to the ongoing microbe–host dialog. Develop Comp Immunol 35:461–468

    Article  CAS  Google Scholar 

  36. Radhakrishnan GK, Yu Q, Harms JS, Splitter GA (2009) Brucella TIR domain-containing protein mimics properties of the Toll-like receptor adaptor protein TIRAP. J Biol Chem 284:9892–9898

    Article  PubMed  CAS  Google Scholar 

  37. Yadav M, Zhang J, Fischer H, Huang W, Lutay N, Cirl C, Lum J, Miethke T, Svanborg C (2010) Inhibition of TIR domain signaling by TcpC: MyD88-dependent and independent effects on Escherichia coli virulence. PLoS Pathog 6:e1001120

    Article  PubMed  Google Scholar 

  38. Sengupta D, Koblansky A, Gaines J, Brown T, West AP, Zhang D, Nishikawa T, Park S-G, Roop RM, Ghosh S (2010) Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J Immunol 184:956–964

    Article  PubMed  CAS  Google Scholar 

  39. Salcedo SP, Marchesini MI, Lelouard H, Fugier E, Jolly G, Balor S, Muller A, Lapaque N, Demaria O, Alexopoulou L et al (2008) Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog 4:e21

    Article  PubMed  Google Scholar 

  40. Spear AM, Rana R, Jenner DC, Flick-Smith HC, Oyston PCF, Simpson P, Matthews S, Byrne B, Atkins HS (2012) A TIR domain protein from Yersinia pestis interacts with mammalian IL-1/TLR pathways but does not play a central role in the virulence of Y. pestis in a mouse model of bubonic plague. Microbiology 158:1593–1606

    Article  PubMed  CAS  Google Scholar 

  41. Zhang Y, Ting AT, Marcu KB, Bliska JB (2005) Inhibition of MAPK and NF-kappa B pathways is necessary for rapid apoptosis in macrophages infected with Yersinia. J Immunol 174:7939–7949

    PubMed  CAS  Google Scholar 

  42. Chan SL, Low LY, Hsu S, Li S, Liu T, Santelli E, Le Negrate G, Reed JC, Woods VL, Pascual J (2009) Molecular mimicry in innate immunity: crystal structure of a bacterial TIR domain. J Biol Chem 284:21386–21392

    Article  PubMed  CAS  Google Scholar 

  43. Radhakrishnan GK, Splitter GA (2010) Biochemical and functional analysis of TIR domain containing protein from Brucella melitensis. Biochem Biophys Res Comm 397:59–63

    Article  PubMed  CAS  Google Scholar 

  44. Dunne A, Ejdeback M, Ludidi PL, O’Neill LAJ, Gay NJ (2003) Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem 278:41443–41451

    Article  PubMed  CAS  Google Scholar 

  45. Rana RR, Simpson P, Zhang M, Jennions M, Ukegbu C, Spear AM, Alguel Y, Matthews SJ, Atkins HS, Byrne B (2011) Yersinia pestis TIR-domain protein forms dimers that interact with the human adaptor protein MyD88. Microb Pathog 51:89–95

    Article  PubMed  CAS  Google Scholar 

  46. Radhakrishnan G, Harms J, Splitter G (2011) Modulation of microtubule dynamics by a TIR domain protein from the intracellular pathogen, Brucella melitensis. Biochem J 439:79–83

    Article  PubMed  CAS  Google Scholar 

  47. Zheng Y, Lilo S, Brodsky IE, Zhang Y, Medzhitov R, Marcu KB, Bliska JB (2011) A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages. PLoS Pathog 7:e1002026

    Article  PubMed  CAS  Google Scholar 

  48. Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–263

    Article  PubMed  CAS  Google Scholar 

  49. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim K-H, Kohlhammer H, Xu W, Yang Y, Zhao H et al (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470:115–119

    Article  PubMed  CAS  Google Scholar 

  50. Lysakova-Devine T, Keogh B, Harrington B, Nagpal K, Halle A, Golenbock DT, Monie T, Bowie AG (2010) Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule. J Immunol 185:4261–4271

    Article  PubMed  CAS  Google Scholar 

  51. Toshchakov VY, Fenton MJ, Vogel SN (2007) Cutting edge: differential inhibition of TLR signaling pathways by cell-permeable peptides representing BB loops of TLRs. J Immunol 178:2655–2660

    PubMed  CAS  Google Scholar 

  52. Chan SL, Mukasa T, Santelli E, Low LY, Pascual J (2010) The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein Sci 19:155–161

    PubMed  CAS  Google Scholar 

  53. Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X et al (2011) Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200–211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the UK Ministry of Defence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette Byrne.

Additional information

Crown Copyright 2011. Published with the permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rana, R.R., Zhang, M., Spear, A.M. et al. Bacterial TIR-containing proteins and host innate immune system evasion. Med Microbiol Immunol 202, 1–10 (2013). https://doi.org/10.1007/s00430-012-0253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-012-0253-2

Keywords

Navigation