Skip to main content
Log in

Febrile response induced by cecal ligation and puncture (CLP) in rats: involvement of prostaglandin E2 and cytokines

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

An Erratum to this article was published on 23 June 2012

Abstract

The purpose of the present study was to better understand the events involved in the febrile response induced by cecal ligation and puncture (CLP), a complex infectious process. To this end, we conducted in vivo experiments in rats examining (1) fever development, (2) bacterial number in the infection focus and in blood, (3) peripheral and hypothalamic synthesis of cytokines, (4) hypothalamic and cerebrospinal fluid (CSF) synthesis of prostaglandin E2 (PGE2), (5) the effect of anti-IL-6 antibody on fever, and (6) the effect of celecoxib on fever and hypothalamic synthesis of PGE2 after CLP induction. We found that CLP promotes fever and animal death depending on the number of punctures. The peak of CLP-induced fever overlapped with the maximal increase in the number of bacteria in the infectious focus and blood, which occurred at 6 and 12 h. The peak of the febrile response also coincided with increased amounts of interleukin (IL)-1β, IL-6 and IL-10 in the peritoneal exudate and serum; IL-6 in the hypothalamus and PGE2 in the CSF and predominantly in the hypothalamus. Moreover, intracerebroventricularly injected anti-IL-6 antibody reduced the febrile response while celecoxib reduced the fever and PGE2 amount in the hypothalamus induced by CLP. Tumor necrosis factor (TNF)-α peaked at 3 h at all sites studied. Conversely, IL-10 concentration decreased in the hypothalamus. These findings show that the peak of CLP-induced fever is accompanied by an increase of bacteria in peritoneal fluid (local infection) and blood; local synthesis of pyrogenic (IL-1β, IL-6) and antipyretic (IL-10) cytokines and central production of IL-6 and PGE2, suggesting that these last are the central mediators of this response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roth J, De Souza GE (2001) Fever induction pathways: evidence from responses to systemic or local cytokine formation. Braz J Med Biol Res 34(3):301–314

    Article  PubMed  CAS  Google Scholar 

  2. Pessini AC, Santos DR, Arantes EC, Souza GE (2006) Mediators involved in the febrile response induced by Tityus serrulatus scorpion venom in rats. Toxicon 48(5):556–566

    Article  PubMed  CAS  Google Scholar 

  3. Kanashiro A, Pessini AC, Machado RR, Malvar Ddo C, Aguiar FA, Soares DM, do Vale ML, de Souza GE (2009) Characterization and pharmacological evaluation of febrile response on zymosan-induced arthritis in rats. Am J Physiol Regul Integr Comp Physiol 296(5):R1631–R1640

    Article  PubMed  CAS  Google Scholar 

  4. Blatteis CM, Li S, Li Z, Feleder C, Perlik V (2005) Cytokines, PGE2 and endotoxic fever: a re-assessment. Prostaglandins Other Lipid Mediat 76(1–4):1–18 (Review)

    Google Scholar 

  5. Blatteis CM (2006) Endotoxic fever: new concepts of its regulation suggest new approaches to its management. Pharmacol Ther 111(1):194–223 (Review)

    Google Scholar 

  6. Roth J, Rummel C, Barth SW, Gerstberger R, Hübschle T (2006) Molecular aspects of fever and hyperthermia. Neurol Clin 24(3):421–439 (Review)

    Google Scholar 

  7. Roth J, Rummel C, Barth SW, Gerstberger R, Hübschle T (2009) Molecular aspects of fever and hyperthermia. Immunol Allergy Clin North Am 29(2):229–245

    Article  PubMed  Google Scholar 

  8. Machado RR, Soares DM, Proudfoot AE, Souza GE (2007) CCR1 and CCR5 chemokine receptors are involved in fever induced by LPS (E. coli) and RANTES in rats. Brain Res 1161:21–31

    Article  PubMed  CAS  Google Scholar 

  9. Soares DM, Machado RR, Yamashiro LH, Melo MC, Souza GE (2008) Cytokine-induced neutrophil chemoattractant (CINC)-1 induces fever by a prostaglandin-dependent mechanism in rats. Brain Res 1233:79–88

    Article  PubMed  CAS  Google Scholar 

  10. Roth J (2006) Endogenous antipyretics. Clin Chim Acta 371(1–2):13–24 (Review)

    Google Scholar 

  11. Gourine AV, Rudolph K, Tesfaigzi J, Kluger MJ (1998) Role of hypothalamic interleukin-1beta in fever induced by cecal ligation and puncture in rats. Am J Physiol 275(3 Pt 2):R754–R761

    PubMed  CAS  Google Scholar 

  12. Johnson JD, O’Connor KA, Deak T, Stark M, Watkins LR, Maier SF (2002) Prior stressor exposure sensitizes LPS-induced cytokine production. Brain Behav Immun 16:461–476

    Article  PubMed  CAS  Google Scholar 

  13. Johnson JD, O’Connor KA, Hansen MK, Watkins LR, Maier SF (2003) Effects of prior stress on LPS-induced cytokine and sickness responses. Am J Physiol Regul Integr Comp Physiol 284:R422–R432

    PubMed  CAS  Google Scholar 

  14. Wichterman KA, Baue AE, Chaudry IH (1980) Sepsis and septic shock–a review of laboratory models and a proposal. J Surg Res 29(2):189–201

    Article  PubMed  CAS  Google Scholar 

  15. Baker CC, Chaudry IH, Gaines HO, Baue AE (1983) Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery 94(2):331–335

    PubMed  CAS  Google Scholar 

  16. Hubbard WJ, Choudhry M, Schwacha MG, Kerby JD, Rue LW III, Bland KI, Chaudry IH (2005) Cecal ligation and puncture. Shock 24:52–57

    Article  PubMed  Google Scholar 

  17. Leon LR, White AA, Kluger MJ (1998) Role of IL-6 and TNF in thermoregulation and survival during sepsis in mice. Am J Physiol 275:R269–R277

    PubMed  CAS  Google Scholar 

  18. Ebong S, Call D, Nemzek J, Bolgos G, Newcomb D, Remick D (1999) Immunopathologic alterations in murine models of sepsis of increasing severity. Infect Immun 67:6603–6610

    PubMed  CAS  Google Scholar 

  19. Torres-Dueñas D, Benjamim CF, Ferreira SH, Cunha FQ (2006) Failure of neutrophil migration to infectious focus and cardiovascular changes on sepsis in rats: effects of the inhibition of nitric oxide production, removal of infectious focus, and antimicrobial treatment. Shock 25:267–276

    Article  PubMed  Google Scholar 

  20. Gordon CJ (1990) Thermal biology of the laboratory rat. Physiol Behav 47:963–991

    Article  PubMed  CAS  Google Scholar 

  21. Romanovsky AA, Ivanov AI, Shimansky YP (2002) Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J Appl Physiol 92:2667–2679

    PubMed  Google Scholar 

  22. Fabricio AS, Veiga FH, Cristofoletti R, Navarra P, Souza GE (2005) The effects of selective and nonselective cyclooxygenase inhibitors on endothelin-1-induced fever in rats. Am J Physiol Regul Integr Comp Physiol 288:R671–R677

    Article  PubMed  CAS  Google Scholar 

  23. Consiglio AR, Lucion AB (2000) Technique for collecting cerebrospinal fluid in the cisterna magna of non-anesthetized rats. Brain Res Protoc 5:109–114

    Article  CAS  Google Scholar 

  24. Fabricio AS, Tringali G, Pozzoli G, Melo MC, Vercesi JA, Souza GE, Navarra P (2006) Interleukin-1 mediates endothelin-1-induced fever and prostaglandin production in the preoptic area of rats. Am J Physiol Regul Integr Comp Physiol 290:R1515–R1523

    Article  PubMed  CAS  Google Scholar 

  25. Bone RC, Fisher CJ, Clemmer TD, Slotman GJ, Metz CA, Balk RA (1989) Sepsis syndrome: a valid clinical entity. Crit Care Med 17:389–393

    Article  PubMed  CAS  Google Scholar 

  26. Briese E (1986) Circadian body temperature rhythm and behavior of rats in thermoclines. Physiol Behav 37:839–847

    Article  PubMed  CAS  Google Scholar 

  27. Refinetti R, Menaker M (1992) The circadian rhythm of body temperature. Physiol Behav 51:613–637

    Article  PubMed  CAS  Google Scholar 

  28. Gordon CJ (1993) Twenty-four hour rhythms of selected ambient temperature in rat and hamster. Physiol Behav 53:257–263

    Article  PubMed  CAS  Google Scholar 

  29. Nolan A, Kobayashi H, Naveed B, Kelly A, Hoshino Y, Hoshino S, Karulf MR, Rom WN, Weiden MD, Gold JA (2009) Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis. PLoS One 12:e6600

    Article  Google Scholar 

  30. Cavaillon JM, Adib-Conquy M, Fitting C, Adrie C, Payen D (2003) Cytokine cascade in sepsis. Scand J Infect Dis 35:535–544 (Review)

    Google Scholar 

  31. Campisi J, Hansen MK, O’Connor KA, Biedenkapp JC, Watkins LR, Maier SF, Fleshner M (2003) Circulating cytokines and endotoxin are not necessary for the activation of the sickness or corticosterone response produced by peripheral E. coli challenge. J Appl Physiol 95(5):1873–1882

    PubMed  CAS  Google Scholar 

  32. Werner MF, Fraga D, Melo MC, Souza GE, Zampronio AR (2003) Importance of the vagus nerve for fever and neutrophil migration induced by intraperitoneal LPS injection. Inflamm Res 52(7):291–296

    PubMed  CAS  Google Scholar 

  33. Zampronio AR, Hoadley ME, Luheshi G, Rothwell NJ, de Souza GE, Hopkins SJ (2000) Interleukin (IL)-6 release and fever induced by a pre-formed pyrogenic factor (PFPF) derived from LPS-stimulated macrophages. Eur Cytokine Netw 11(4):589–596

    PubMed  CAS  Google Scholar 

  34. Soares DM, Figueiredo MJ, Martins JM, Machado RR, Sorgi C, Faciolli LH, Alves-Filho JC, Cunha FQ, Souza GE (2011) A crucial role for IL-6 in the CNS of rats during fever induced by the injection of live E. coli. Med Microbiol Immunol (Epub ahead of print)

  35. Muenzer JT, Davis CG, Dunne BS, Unsinger J, Dunne WM, Hotchkiss RS (2006) Pneumonia after cecal ligation and puncture: a clinically relevant “two-hit” model of sepsis. Shock 26(6):565–570

    Article  PubMed  Google Scholar 

  36. Damas P, Ledoux D, Nys M, Vrindts Y, De Groote D, Franchimont P, Lamy M (1992) Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg 215:356–362

    Article  PubMed  CAS  Google Scholar 

  37. Casey LC, Balk RA, Bone RC (1993) Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119:771–778

    PubMed  CAS  Google Scholar 

  38. Fisher CJ Jr, Opal SM, Dhainaut JF, Stephens S, Zimmerman JL, Nightingale P, Harris SJ, Schein RM, Panacek EA, Vincent JL et al (1993) Influence of an anti-tumor necrosis factor monoclonal antibody on cytokine levels in patients with sepsis. Crit Care Med 21:318–327

    Article  PubMed  Google Scholar 

  39. Baigrie RJ, Lamont PM, Kwiatkowski D, Dallman MJ, Morris PJ (1992) Systemic cytokine response after major surgery. Br J Surg 79:757–760

    Article  PubMed  CAS  Google Scholar 

  40. Turnbull IR, Javadi P, Buchman TG, Hotchkiss RS, Karl IE, Coopersmith CM (2004) Antibiotics improve survival in sepsis independent of injury severity but do not change mortality in mice with markedly elevated interleukin 6 levels. Shock 21:121–125

    Article  PubMed  CAS  Google Scholar 

  41. Vianna RC, Gomes RN, Bozza FA, Amâncio RT, Bozza PT, David CM, Castro-Faria-Neto HC (2004) Antibiotic treatment in a murine model of sepsis: impact on cytokines and endotoxin release. Shock 21:115–120

    Article  PubMed  CAS  Google Scholar 

  42. Remick DG, Bolgos GR, Siddiqui J, Shin J, Nemzek JA (2002) Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock 17:463–467

    Article  PubMed  Google Scholar 

  43. Frink M, van Griensven M, Kobbe P, Brin T, Zeckey C, Vaske B, Krettek C, Hildebrand F (2009) IL-6 predicts organ dysfunction and mortality in patients with multiple injuries. Scand J Trauma Resusc Emerg Med 27:17–49

    Google Scholar 

  44. Riedemann NC, Neff TA, Guo RF, Bernacki KD, Laudes IJ, Sarma JV, Lambris JD, Ward PA (2003) Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. J Immunol 170(1):503–507

    PubMed  CAS  Google Scholar 

  45. Chai Z, Gatti S, Toniatti C, Poli V, Bartfai T (1996) Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a study on IL-6-deficient mice. J Exp Med 183:311–316

    Article  PubMed  CAS  Google Scholar 

  46. Helle M, Brakenhoff JP, De Groot ER, Aarden LA (1988) Interleukin 6 is involved in interleukin 1-induced activities. Eur J Immunol 18:957–959

    Article  PubMed  CAS  Google Scholar 

  47. Chida D, Iwakura Y (2007) Peripheral TNFalpha, but not peripheral IL-1, requires endogenous IL-1 or TNFalpha induction in the brain for the febrile response. Biochem Biophys Res Commun 364:765–770

    Article  PubMed  CAS  Google Scholar 

  48. Puma C, Danik M, Quirion R, Ramon F, Williams S (2001) The chemokine interleukin-8 acutely reduces Ca+2 currents in identified cholinergic septal neurons expressing CXCR1and CXCR2 receptor mRNAs. J Neurochem 78:960–971

    Article  PubMed  CAS  Google Scholar 

  49. Campbell SJ, Wilcockson DC, Butchart AG, Perry VH, Anthony DC (2002) Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment. J Neurochem 83:432–441

    Article  PubMed  CAS  Google Scholar 

  50. Muenzer JT, Davis CG, Chang K, Schmidt RE, Dunne WM, Coopersmith CM, Hotchkiss RS (2010) Characterization and modulation of the immunosuppressive phase of sepsis. Infect Immun 78(4):1582–1592

    Article  PubMed  CAS  Google Scholar 

  51. Wiersinga WJ (2011) Current insights in sepsis: from pathogenesis to new treatment targets. Curr Opin Crit Care 17(5):480–486

    Article  PubMed  Google Scholar 

  52. Ledeboer A, Brevé JJP, Poole S, Tilders FJH, Van Dam AM (2000) Interleukin-10, interleukin-4 and transforming growth factor-β differentially regulate lipopolysaccharide-induced production of proinflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 30:134–142

    Article  PubMed  CAS  Google Scholar 

  53. De Waal Malefyt R, Abrams J, Bennett B, Figdor C, De Vries JE (1991) Interleukin-10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220

    Article  PubMed  Google Scholar 

  54. Mitchell JA, Belvisi MG, Akarasereenont P, Robbins RA, Kwon OJ, Croxtall J, Barnes PJ, Vane JR (1994) Induction of cyclo-oxygenase-2 by cytokines in human pulmonary epithelial cells: regulation by dexamethasone. Br J Pharmacol 113:1008–1014

    PubMed  CAS  Google Scholar 

  55. Singer CA, Baker KJ, McCaffrey A, AuCoin DP, Dechert MA, Gerthoffer WT (2003) p38 MAPK and NF-kappaB mediate COX-2 expression in human airway myocytes. Am J Physiol Lung Cell Mol Physiol 285:L1087–L1098

    PubMed  CAS  Google Scholar 

  56. Malvar Ddo C, Soares DM, Fabrício AS, Kanashiro A, Machado RR, Figueiredo MJ, Rae GA, de Souza GE (2011) The antipyretic effect of dipyrone is unrelated to inhibition of PGE(2) synthesis in the hypothalamus. Br J Pharmacol 162(6):1401–1409

    Article  PubMed  Google Scholar 

  57. Cao C, Matsumura K, Shirakawa N, Maeda M, Jikihara I, Kobayashi S, Watanabe Y (2001) Pyrogenic cytokines injected into the rat cerebral ventricle induce cyclooxygenase-2 in brain endothelial cells and also up regulate their receptors. Eur J Neurosci 13:1781–1790

    Article  PubMed  CAS  Google Scholar 

  58. Oka Y, Ibuki T, Matsumura K, Namba M, Yamazaki Y, Poole S, Tanaka Y, Kobayashi S (2007) Interleukin-6 is a candidate molecule that transmits inflammatory information to the CNS. Neuroscience 145:530–538

    Article  PubMed  CAS  Google Scholar 

  59. Nakamura Y, Nakamura K, Matsumura K, Kobayashi S, Kaneko T, Morrison SF (2005) Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus. Eur J Neurosci 22:3137–3146

    Article  PubMed  Google Scholar 

  60. Lazarus M, Yoshida K, Coppari R, Bass CE, Mochizuki T, Lowell BB et al (2007) EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat Neurosci 10:1131–1133

    Article  PubMed  CAS  Google Scholar 

  61. Harden LM, du Plessis I, Poole S, Laburn HP (2008) Interleukin (IL)-6 and IL-1 beta act synergistically within the brain to induce sickness behavior and fever in rats. Brain Behav Immun 22:838–849

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José Figueiredo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiredo, M.J., de Melo Soares, D., Martins, J.M. et al. Febrile response induced by cecal ligation and puncture (CLP) in rats: involvement of prostaglandin E2 and cytokines. Med Microbiol Immunol 201, 219–229 (2012). https://doi.org/10.1007/s00430-011-0225-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-011-0225-y

Keywords

Navigation