Skip to main content

Advertisement

Log in

Molecular biology of foamy viruses

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

One of the most fascinating areas in retrovirology is the study of foamy viruses (FVs), because these viruses appear to do everything that is common to all other retroviruses differently. FVs have found a completely new way to propagate their genome. And they do this extremely successfully because most of wild non-human primates, felines, bovines, equines, and small ruminants are likely to be non-pathogenically infected. The success of FVs can also be viewed from a different angle, since they replicate very conservatively and do not need to shape their genotypic and phenotypic makeup every now and then. The elucidation of the underlying basic mechanisms of the FV replication strategy is the topic of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Linial M, Fan H, Hahn B, Löwer R, Neil J, Quackenbusch S, Rethwilm A, Sonigo P, Stoye J, Tristem M (2005) Retroviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. Elsevier, San Diego

    Google Scholar 

  2. Vogt PK (1997) Historical introduction to the general properties of retroviruses. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  3. Rethwilm A (2003) The replication strategy of foamy viruses. Curr Top Microbiol Immunol 277:1–26

    PubMed  CAS  Google Scholar 

  4. Rethwilm A (2005) Foamy viruses. In: Mahy BWJ, ter Meulen V (eds) Topley & Wilson’s microbiology and microbial infections—virology, 10th edn edn. Hodder Arnold, London, pp 1304–1321

    Google Scholar 

  5. Linial M (2007) Foamy viruses. In: Knipe EDM, Howley PM (eds) Fields virology, 5th edn. Lippincot Williams & Wilkins, Philadelphia, pp 2245–2262

    Google Scholar 

  6. Linial ML (1999) Foamy viruses are unconventional retroviruses. J Virol 73:1747–1755

    PubMed  CAS  Google Scholar 

  7. Linial M (2000) Why aren’t foamy viruses pathogenic? Trends Microbiol 8:284–289

    PubMed  CAS  Google Scholar 

  8. Murray SM, Linial ML (2006) Foamy virus infection in primates. J Med Primatol 35:225–235

    PubMed  CAS  Google Scholar 

  9. Murray SM, Picker LJ, Axthelm MK, Hudkins K, Alpers CE, Linial ML (2008) Replication in a superficial epithelial cell niche explains the lack of pathogenicity of primate foamy virus infections. J Virol 82:5981–5985

    PubMed  CAS  Google Scholar 

  10. Flanagan M (1992) Isolation of a spumavirus from a sheep. Aust Vet J 69:112–113

    PubMed  CAS  Google Scholar 

  11. Switzer WM, Salemi M, Shanmugam V, Gao F, Cong ME, Kuiken C, Bhullar V, Beer BE, Vallet D, Gautier-Hion A, Tooze Z, Villinger F, Holmes EC, Heneine W (2005) Ancient co-speciation of simian foamy viruses and primates. Nature 434:376–380

    PubMed  CAS  Google Scholar 

  12. Thümer L, Rethwilm A, Holmes EC, Bodem J (2007) The complete nucleotide sequence of a New World simian foamy virus. Virology 369:191–197

    PubMed  Google Scholar 

  13. Jones-Engel L, Engel GA, Heidrich J, Chalise M, Poudel N, Viscidi R, Barry PA, Allan JS, Grant R, Kyes R (2006) Temple monkeys and health implications of commensalism, Kathmandu, Nepal. Emerg Infect Dis 12:900–906

    PubMed  Google Scholar 

  14. Jones-Engel L, Engel GA, Schillaci MA, Rompis A, Putra A, Suaryana KG, Fuentes A, Beer B, Hicks S, White R, Wilson B, Allan JS (2005) Primate-to-human retroviral transmission in Asia. Emerg Infect Dis 11:1028–1035

    PubMed  Google Scholar 

  15. Jones-Engel L, May CC, Engel GA, Steinkraus KA, Schillaci MA, Fuentes A, Rompis A, Chalise MK, Aggimarangsee N, Feeroz MM, Grant R, Allan JS, Putra A, Wandia IN, Watanabe R, Kuller L, Thongsawat S, Chaiwarith R, Kyes RC, Linial ML (2008) Diverse contexts of zoonotic transmission of simian foamy viruses in Asia. Emerg Infect Dis 14:1200–1208

    PubMed  CAS  Google Scholar 

  16. Falcone V, Leupold J, Clotten J, Urbanyi E, Herchenröder O, Spatz W, Volk B, Bohm N, Toniolo A, Neumann-Haefelin D, Schweizer M (1999) Sites of simian foamy virus persistence in naturally infected African green monkeys: latent provirus is ubiquitous, whereas viral replication is restricted to the oral mucosa. Virology 257:7–14

    PubMed  CAS  Google Scholar 

  17. Heneine W, Schweizer M, Sandstrom P, Folks T (2003) Human infection with foamy viruses. Curr Top Microbiol Immunol 277:181–196

    PubMed  CAS  Google Scholar 

  18. Heneine W, Switzer WM, Sandstrom P, Brown J, Vedapuri S, Schable CA, Khan AS, Lerche NW, Schweizer M, Neumann-Haefelin D, Chapman LE, Folks TM (1998) Identification of a human population infected with simian foamy viruses. Nat Med 4:403–407

    PubMed  CAS  Google Scholar 

  19. Katzourakis A, Gifford RJ, Tristem M, Gilbert MT, Pybus OG (2009) Macroevolution of complex retroviruses. Science 325:1512

    PubMed  CAS  Google Scholar 

  20. Boyer PL, Stenbak CR, Hoberman D, Linial ML, Hughes SH (2007) In vitro fidelity of the prototype primate foamy virus (PFV) RT compared to HIV-1 RT. Virology 367:253–264

    PubMed  CAS  Google Scholar 

  21. Gärtner K, Wiktorowicz T, Park J, Mergia A, Rethwilm A, Scheller C (2009) Accuracy estimation of foamy virus genome copying. Retrovirology 6:32

    PubMed  Google Scholar 

  22. Delebecque F, Suspene R, Calattini S, Casartelli N, Saib A, Froment A, Wain-Hobson S, Gessain A, Vartanian JP, Schwartz O (2006) Restriction of foamy viruses by APOBEC cytidine deaminases. J Virol 80:605–614

    PubMed  CAS  Google Scholar 

  23. Löchelt M, Romen F, Bastone P, Muckenfuss H, Kirchner N, Kim YB, Truyen U, Rösler U, Battenberg M, Saib A, Flory E, Cichutek K, Munk C (2005) The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein. Proc Natl Acad Sci USA 102:7982–7987

    PubMed  Google Scholar 

  24. Russell RA, Wiegand HL, Moore MD, Schafer A, McClure MO, Cullen BR (2005) Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antretroviral defense factors. J Virol 79(14):8724–8731

    PubMed  CAS  Google Scholar 

  25. Switzer WM, Garcia AD, Yang C, Wright A, Kalish ML, Folks TM, Heneine W (2008) Coinfection with HIV-1 and simian foamy virus in West Central Africans. J Infect Dis 197:1389–1393

    PubMed  CAS  Google Scholar 

  26. Leendertz FH, Zirkel F, Couacy-Hymann E, Ellerbrok H, Morozov VA, Pauli G, Hedemann C, Formenty P, Jensen SA, Boesch C, Junglen S (2008) Interspecies transmission of simian foamy virus in a natural predator-prey system. J Virol 82:7741–7744

    PubMed  CAS  Google Scholar 

  27. Liu W, Worobey M, Li Y, Keele BF, Bibollet-Ruche F, Guo Y, Goepfert PA, Santiago ML, Ndjango JB, Neel C, Clifford SL, Sanz C, Kamenya S, Wilson ML, Pusey AE, Gross-Camp N, Boesch C, Smith V, Zamma K, Huffman MA, Mitani JC, Watts DP, Peeters M, Shaw GM, Switzer WM, Sharp PM, Hahn BH (2008) Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees. PLoS Pathog 4:e1000097

    PubMed  Google Scholar 

  28. Moebes A, Enssle J, Bieniasz PD, Heinkelein M, Lindemann D, Bock M, McClure MO, Rethwilm A (1997) Human foamy virus reverse transcription that occurs late in the viral replication cycle. J Virol 71:7305–7311

    PubMed  CAS  Google Scholar 

  29. Heinkelein M, Pietschmann T, Jarmy G, Dressler M, Imrich H, Thurow J, Lindemann D, Bock M, Moebes A, Roy J, Herchenröder O, Rethwilm A (2000) Efficient intracellular retrotransposition of an exogenous primate retrovirus genome. EMBO J 19:3436–3445

    PubMed  CAS  Google Scholar 

  30. Heinkelein M, Rammling M, Juretzek T, Lindemann D, Rethwilm A (2003) Retrotransposition and cell-to-cell transfer of foamy viruses. J Virol 77:11855–11858

    PubMed  CAS  Google Scholar 

  31. Roy J, Rudolph W, Juretzek T, Gärtner K, Bock M, Herchenröder O, Lindemann D, Heinkelein M, Rethwilm A (2003) Feline foamy virus genome and replication strategy. J Virol 77:11324–11331

    PubMed  CAS  Google Scholar 

  32. Rethwilm A, Erlwein O, Baunach G, Maurer B, ter Meulen V (1991) The transcriptional transactivator of human foamy virus maps to the bel 1 genomic region. Proc Natl Acad Sci USA 88:941–945

    PubMed  CAS  Google Scholar 

  33. Keller A, Partin KM, Löchelt M, Bannert H, Flügel RM, Cullen BR (1991) Characterization of the transcriptional trans activator of human foamy retrovirus. J Virol 65:2589–2594

    PubMed  CAS  Google Scholar 

  34. Löchelt M, Muranyi W, Flügel RM (1993) Human foamy virus genome possesses an internal, Bel-1-dependent and functional promoter. Proc Natl Acad Sci USA 90:7317–7321

    PubMed  Google Scholar 

  35. Löchelt M, Yu SF, Linial ML, Flügel RM (1995) The human foamy virus internal promoter is required for efficient gene expression and infectivity. Virology 206:601–610

    PubMed  Google Scholar 

  36. He F, Blair WS, Fukushima J, Cullen BR (1996) The human foamy virus Bel-1 transcription factor is a sequence-specific DNA binding protein. J Virol 70:3902–3908

    PubMed  CAS  Google Scholar 

  37. Kang Y, Blair WS, Cullen BR (1998) Identification and functional characterization of a high-affinity Bel-1 DNA binding site located in the human foamy virus internal promoter. J Virol 72:504–511

    PubMed  CAS  Google Scholar 

  38. Kang Y, Cullen BR (1998) Derivation and functional characterization of a consensus DNA binding sequence for the tas transcriptional activator of simian foamy virus type 1. J Virol 72:5502–5509

    PubMed  CAS  Google Scholar 

  39. Löchelt M (2003) Foamy virus transactivation and gene expression. Curr Top Microbiol Immunol 277:27–61

    PubMed  Google Scholar 

  40. Baunach G, Maurer B, Hahn H, Kranz M, Rethwilm A (1993) Functional analysis of human foamy virus accessory reading frames. J Virol 67:5411–5418

    PubMed  CAS  Google Scholar 

  41. Bodem J, Kräusslich HG, Rethwilm A (2007) Acetylation of the foamy virus transactivator Tas by PCAF augments promoter-binding affinity and virus transcription. J Gen Virol 88:259–263

    PubMed  CAS  Google Scholar 

  42. Cullen BR (1991) Human immunodeficiency virus as a prototypic complex retrovirus. J Virol 65:1053–1056

    PubMed  CAS  Google Scholar 

  43. Cullen BR (2003) Nuclear mRNA export: insights from virology. Trends Biochem Sci 28:419–424

    PubMed  CAS  Google Scholar 

  44. Russell RA, Wiegand HL, Moore MD, Schäfer A, McClure MO, Cullen BR (2005) Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors. J Virol 79:8724–8731

    PubMed  CAS  Google Scholar 

  45. Yu SF, Baldwin DN, Gwynn SR, Yendapalli S, Linial ML (1996) Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271:1579–1582

    PubMed  CAS  Google Scholar 

  46. Swanstrom R, Wills JW (1997) Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Labratory Press, Plainview, pp 263–334

    Google Scholar 

  47. Cartellieri M, Rudolph M, Herchenröder O, Lindemann D, Rethwilm A (2005) Determination of the relative amounts of Gag and Pol proteins in foamy virus particles. Retrovirology 2:44

    PubMed  Google Scholar 

  48. Enssle J, Fischer N, Moebes A, Mauer B, Smola U, Rethwilm A (1997) Carboxy-terminal cleavage of the human foamy virus Gag precursor molecule is an essential step in the viral life cycle. J Virol 71:7312–7317

    PubMed  CAS  Google Scholar 

  49. Zemba M, Wilk T, Rutten T, Wagner A, Flügel RM, Löchelt M (1998) The carboxy-terminal p3Gag domain of the human foamy virus Gag precursor is required for efficient virus infectivity. Virology 247:7–13

    PubMed  CAS  Google Scholar 

  50. Lehmann-Che J, Giron ML, Delelis O, Löchelt M, Bittoun P, Tobaly-Tapiero J, de The H, Saib A (2005) Protease-dependent uncoating of a complex retrovirus. J Virol 79:9244–9253

    PubMed  CAS  Google Scholar 

  51. Pfrepper KI, Löchelt M, Rackwitz HR, Schnölzer M, Heid H, Flügel RM (1999) Molecular characterization of proteolytic processing of the Gag proteins of human spumavirus. J Virol 73:7907–7911

    PubMed  CAS  Google Scholar 

  52. Fischer N, Heinkelein M, Lindemann D, Enssle J, Baum C, Werder E, Zentgraf H, Müller JG, Rethwilm A (1998) Foamy virus particle formation. J Virol 72:1610–1615

    PubMed  CAS  Google Scholar 

  53. Pietschmann T, Heinkelein M, Heldmann M, Zentgraf H, Rethwilm A, Lindemann D (1999) Foamy virus capsids require the cognate envelope protein for particle export. J Virol 73:2613–2621

    PubMed  CAS  Google Scholar 

  54. Cartellieri M, Herchenröder O, Rudolph W, Heinkelein M, Lindemann D, Zentgraf H, Rethwilm A (2005) N-terminal Gag domain required for foamy virus particle assembly and export. J Virol 79:12464–12476

    PubMed  CAS  Google Scholar 

  55. Life RB, Lee EG, Eastman SW, Linial ML (2008) Mutations in the amino terminus of foamy virus Gag disrupt morphology and infectivity but do not target assembly. J Virol 82:6109–6119

    PubMed  CAS  Google Scholar 

  56. Eastman SW, Linial ML (2001) Identification of a conserved residue of foamy virus Gag required for intracellular capsid assembly. J Virol 75:6857–6864

    PubMed  CAS  Google Scholar 

  57. Petit C, Giron ML, Tobaly-Tapiero J, Bittoun P, Real E, Jacob Y, Tordo N, De The H, Saib A (2003) Targeting of incoming retroviral Gag to the centrosome involves a direct interaction with the dynein light chain 8. J Cell Sci 116:3433–3442

    PubMed  CAS  Google Scholar 

  58. Tobaly-Tapiero J, Bittoun P, Giron ML, Neves M, Koken M, Saib A, de The H (2001) Human foamy virus capsid formation requires an interaction domain in the N terminus of Gag. J Virol 75:4367–4375

    PubMed  CAS  Google Scholar 

  59. Freed EO (2002) Viral late domains. J Virol 76:4679–4687

    PubMed  CAS  Google Scholar 

  60. Patton GS, Morris SA, Chung W, Bieniasz PD, McClure MO (2005) Identification of domains in gag important for prototypic foamy virus egress. J Virol 79:6392–6399

    PubMed  CAS  Google Scholar 

  61. Stange A, Mannigel I, Peters K, Heinkelein M, Stanke N, Cartellieri M, Göttlinger H, Rethwilm A, Zentgraf H, Lindemann D (2005) Characterization of prototype foamy virus gag late assembly domain motifs and their role in particle egress and infectivity. J Virol 79:5466–5476

    PubMed  CAS  Google Scholar 

  62. Zhadina M, McClure MO, Johnson MC, Bieniasz PD (2007) Ubiquitin-dependent virus particle budding without viral protein ubiquitination. Proc Natl Acad Sci USA 104:20031–20036

    PubMed  CAS  Google Scholar 

  63. Stanke N, Stange A, Lüftenegger D, Zentgraf H, Lindemann D (2005) Ubiquitination of the prototype foamy virus envelope glycoprotein leader peptide regulates subviral particle release. J Virol 79:15074–15083

    PubMed  CAS  Google Scholar 

  64. Schliephake AW, Rethwilm A (1994) Nuclear localization of foamy virus Gag precursor protein. J Virol 68:4946–4954

    PubMed  CAS  Google Scholar 

  65. Yu SF, Edelmann K, Strong RK, Moebes A, Rethwilm A, Linial ML (1996) The carboxyl terminus of the human foamy virus Gag protein contains separable nucleic acid binding and nuclear transport domains. J Virol 70:8255–8262

    PubMed  CAS  Google Scholar 

  66. Lee EG, Linial ML (2008) The C terminus of foamy retrovirus Gag contains determinants for encapsidation of Pol protein into virions. J Virol 82:10803–10810

    PubMed  CAS  Google Scholar 

  67. Tobaly-Tapiero J, Bittoun P, Lehmann-Che J, Delelis O, Giron ML, de The H, Saib A (2008) Chromatin tethering of incoming foamy virus by the structural Gag protein. Traffic 9:1717–1727

    PubMed  CAS  Google Scholar 

  68. Bodem J, Löchelt M, Winkler I, Flower RP, Delius H, Flügel RM (1996) Characterization of the spliced pol transcript of feline foamy virus: the splice acceptor site of the pol transcript is located in gag of foamy viruses. J Virol 70:9024–9027

    PubMed  CAS  Google Scholar 

  69. Jordan I, Enssle J, Güttler E, Mauer B, Rethwilm A (1996) Expression of human foamy virus reverse transcriptase involves a spliced pol mRNA. Virology 224:314–319

    PubMed  CAS  Google Scholar 

  70. Heinkelein M, Leurs C, Rammling M, Peters K, Hanenberg H, Rethwilm A (2002) Pregenomic RNA is required for efficient incorporation of pol polyprotein into foamy virus capsids. J Virol 76:10069–10073

    PubMed  CAS  Google Scholar 

  71. Peters K, Wiktorowicz T, Heinkelein M, Rethwilm A (2005) RNA and protein requirements for incorporation of the Pol protein into foamy virus particles. J Virol 79:7005–7013

    PubMed  CAS  Google Scholar 

  72. Rinke CS, Boyer PL, Sullivan MD, Hughes SH, Linial ML (2002) Mutation of the catalytic domain of the foamy virus reverse transcriptase leads to loss of processivity and infectivity. J Virol 76:7560–7570

    PubMed  CAS  Google Scholar 

  73. Pfrepper KI, Rackwitz HR, Schnolzer M, Heid H, Löchelt M, Flügel RM (1998) Molecular characterization of proteolytic processing of the Pol proteins of human foamy virus reveals novel features of the viral protease. J Virol 72:7648–7652

    PubMed  CAS  Google Scholar 

  74. Imrich H, Heinkelein M, Herchenröder O, Rethwilm A (2000) Primate foamy virus Pol proteins are imported into the nucleus. J Gen Virol 81:2941–2947

    PubMed  CAS  Google Scholar 

  75. Lo YT, Tian T, Nadeau PE, Park J, Mergia A (2010) The foamy virus genome remains unintegrated in the nuclei of G1/S phase-arrested cells, and integrase is critical for preintegration complex transport into the nucleus. J Virol 84:2832–2842

    PubMed  CAS  Google Scholar 

  76. Hartl MJ, Mayr F, Rethwilm A, Wöhrl BM (2010) Biophysical and enzymatic properties of the simian and prototype foamy virus reverse transcriptases. Retrovirology 7:5

    PubMed  Google Scholar 

  77. Hartl MJ, Schweimer K, Reger MH, Schwarzinger S, Bodem J, Rösch P, Wöhrl BM (2010) Formation of transient dimers by a retroviral protease. Biochem J 427:197–203

    Google Scholar 

  78. Hartl MJ, Kretzschmar B, Frohn A, Nowrouzi A, Rethwilm A, Wöhrl BM (2008) AZT resistance of simian foamy virus reverse transcriptase is based on the excision of AZTMP in the presence of ATP. Nucleic Acids Res 36:1009–1016

    PubMed  CAS  Google Scholar 

  79. Hartl MJ, Wöhrl BM, Rösch P, Schweimer K (2008) The solution structure of the simian foamy virus protease reveals a monomeric protein. J Mol Biol 381:141–149

    PubMed  CAS  Google Scholar 

  80. Lee CC, Ye F, Tarantal AF (2006) Comparison of growth and differentiation of fetal and adult rhesus monkey mesenchymal stem cells. Stem Cells Dev 15:209–220

    PubMed  CAS  Google Scholar 

  81. Rosenblum LL, Patton G, Grigg AR, Frater AJ, Cain D, Erlwein O, Hill CL, Clarke JR, McClure MO (2001) Differential susceptibility of retroviruses to nucleoside analogues. Antivir Chem Chemother 12:91–97

    PubMed  CAS  Google Scholar 

  82. Kretzschmar B, Nowrouzi A, Hartl MJ, Gärtner K, Wiktorowicz T, Herchenröder O, Kanzler S, Rudolph W, Mergia A, Wöhrl B, Rethwilm A (2008) AZT-resistant foamy virus. Virology 370:151–157

    PubMed  CAS  Google Scholar 

  83. Enssle J, Moebes A, Heinkelein M, Panhuysen M, Mauer B, Schweizer M, Neumann-Haefelin D, Rethwilm A (1999) An active foamy virus integrase is required for virus replication. J Gen Virol 80:1445–1452

    PubMed  CAS  Google Scholar 

  84. Juretzek T, Holm T, Gärtner K, Kanzler S, Lindemann D, Herchenröder O, Picard-Maureau M, Rammling M, Heinkelein M, Rethwilm A (2004) Foamy virus integration. J Virol 78:2472–2477

    PubMed  CAS  Google Scholar 

  85. Delelis O, Petit C, Leh H, Mbemba G, Mouscadet JF, Sonigo P (2005) A novel function for spumaretrovirus integrase: an early requirement for integrase-mediated cleavage of 2 LTR circles. Retrovirology 2:31

    PubMed  Google Scholar 

  86. Hunter E (1997) Viral entry and receptors. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbour Labratory Press, Plainview, pp 71–119

    Google Scholar 

  87. Lindemann D, Goepfert PA (2003) The foamy virus envelope glycoproteins. Curr Top Microbiol Immunol 277:111–129

    PubMed  CAS  Google Scholar 

  88. Lindemann D, Pietschmann T, Picard-Maureau M, Berg A, Heinkelein M, Thurow J, Knaus P, Zentgraf H, Rethwilm A (2001) A particle-associated glycoprotein signal peptide essential for virus maturation and infectivity. J Virol 75:5762–5771

    PubMed  CAS  Google Scholar 

  89. Pietschmann T, Zentgraf H, Rethwilm A, Lindemann D (2000) An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol 74:4474–4482

    PubMed  CAS  Google Scholar 

  90. Duda A, Lüftenegger D, Pietschmann T, Lindemann D (2006) Characterization of the prototype foamy virus envelope glycoprotein receptor-binding domain. J Virol 80:8158–8167

    PubMed  CAS  Google Scholar 

  91. Yu SF, Eastman SW, Linial ML (2006) Foamy virus capsid assembly occurs at a pericentriolar region through a cytoplasmic targeting/retention signal in Gag. Traffic 7:966–977

    PubMed  CAS  Google Scholar 

  92. Lindemann D, Bock M, Schweizer M, Rethwilm A (1997) Efficient pseudotyping of murine leukemia virus particles with chimeric human foamy virus envelope proteins. J Virol 71:4815–4820

    PubMed  CAS  Google Scholar 

  93. Shikova-Lekova E, Lindemann D, Pietschmann T, Juretzek T, Rudolph W, Herchenröder O, Gelderblom HR, Rethwilm A (2003) Replication-competent hybrids between murine leukemia virus and foamy virus. J Virol 77:7677–7681

    PubMed  CAS  Google Scholar 

  94. Hill CL, Bieniasz PD, McClure MO (1999) Properties of human foamy virus relevant to its development as a vector for gene therapy. J Gen Virol 80:2003–2009

    PubMed  CAS  Google Scholar 

  95. Berg A, Pietschmann T, Rethwilm A, Lindemann D (2003) Determinants of foamy virus envelope glycoprotein mediated resistance to superinfection. Virology 314:243–252

    PubMed  CAS  Google Scholar 

  96. Lüftenegger D, Picard-Maureau M, Stanke N, Rethwilm A, Lindemann D (2005) Analysis and function of prototype foamy virus envelope N glycosylation. J Virol 79:7664–7672

    PubMed  Google Scholar 

  97. Picard-Maureau M, Jarmy G, Berg A, Rethwilm A, Lindemann D (2003) Foamy virus envelope glycoprotein-mediated entry involves a pH-dependent fusion process. J Virol 77:4722–4730

    PubMed  CAS  Google Scholar 

  98. Rethwilm A (2007) Foamy virus vectors: an awaited alternative to gammaretro- and lentiviral vectors. Curr Gene Ther 7:261–271

    PubMed  CAS  Google Scholar 

  99. Vassilopoulos G, Rethwilm A (2008) Foamy virus vectors: The usefulness of a perfect parasite. Gene Ther 15:1299–1301

    PubMed  CAS  Google Scholar 

  100. Bauer TR Jr, Allen JM, Hai M, Tuschong LM, Khan IF, Olson EM, Adler RL, Burkholder TH, Gu YC, Russell DW, Hickstein DD (2008) Successful treatment of canine leukocyte adhesion deficiency by foamy virus vectors. Nat Med 14:93–97

    PubMed  CAS  Google Scholar 

  101. Si Y, Pulliam AC, Linka Y, Ciccone S, Leurs C, Yuan J, Eckermann O, Fruehauf S, Mooney S, Hanenberg H, Clapp DW (2008) Overnight transduction with foamyviral vectors restores the long-term repopulating activity of Fancc-/- stem cells. Blood 112:4458–4465

    PubMed  CAS  Google Scholar 

  102. Leurs C, Jansen M, Pollok KE, Heinkelein M, Schmidt M, Wissler M, Lindemann D, Von Kalle C, Rethwilm A, Williams DA, Hanenberg H (2003) Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum Gene Ther 14:509–519

    PubMed  CAS  Google Scholar 

  103. Picard-Maureau M, Kreppel F, Lindemann D, Juretzek T, Herchenröder O, Rethwilm A, Kochanek S, Heinkelein M (2004) Foamy virus–adenovirus hybrid vectors. Gene Ther 11:722–728

    PubMed  CAS  Google Scholar 

  104. Wiktorowicz T, Peters K, Armbruster N, Steinert AF, Rethwilm A (2009) Generation of an improved foamy virus vector by dissection of cis-acting sequences. J Gen Virol 90:481–487

    PubMed  CAS  Google Scholar 

  105. Hacein-Bey S, Yates F, de Villartay JP, Fischer A, Cavazzana-Calvo M (2002) Gene therapy of severe combined immunodeficiencies: from mice to humans. Neth J Med 60:299–301

    PubMed  CAS  Google Scholar 

  106. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, MacIntyre E, Dal Cortivo L, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky BH, Wintergerst U, Velez MC, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman FD, Fischer A, Cavazzana-Calvo M (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142

    PubMed  CAS  Google Scholar 

  107. Nowrouzi A, Dittrich M, Klanke C, Heinkelein M, Rammling M, Dandekar T, von Kalle C, Rethwilm A (2006) Genome-wide mapping of foamy virus vector integrations into a human cell line. J Gen Virol 87:1339–1347

    PubMed  CAS  Google Scholar 

  108. Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R, Russell DW (2006) Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci USA 103:1498–1503

    PubMed  CAS  Google Scholar 

  109. Trobridge G, Russell DW (2004) Cell cycle requirements for transduction by foamy virus vectors compared to those of oncovirus and lentivirus vectors. J Virol 78:2327–2335

    PubMed  CAS  Google Scholar 

  110. Sirven A, Pflumio F, Zennou V, Titeux M, Vainchenker W, Coulombel L, Dubart-Kupperschmitt A, Charneau P (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96:4103–4110

    PubMed  CAS  Google Scholar 

  111. Arhel N, Munier S, Souque P, Mollier K, Charneau P (2006) Nuclear import defect of human immunodeficiency virus type 1 DNA flap mutants is not dependent on the viral strain or target cell type. J Virol 80:10262–10269

    PubMed  CAS  Google Scholar 

  112. Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherford S, Prevost MC, Allen TD, Charneau P (2007) HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J 26:3025–3037

    PubMed  CAS  Google Scholar 

  113. Charneau P, Mirambeau G, Roux P, Paulous S, Buc H, Clavel F (1994) HIV-1 reverse transcription. A termination step at the center of the genome. J Mol Biol 241:651–662

    CAS  Google Scholar 

  114. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185

    PubMed  CAS  Google Scholar 

  115. Kupiec JJ, Tobaly-Tapiero J, Canivet M, Santillana-Hayat M, Flügel RM, Peries J, Emanoil-Ravier R (1988) Evidence for a gapped linear duplex DNA intermediate in the replicative cycle of human and simian spumaviruses. Nucleic Acids Res 16:9557–9565

    PubMed  CAS  Google Scholar 

  116. Tobaly-Tapiero J, Kupiec JJ, Santillana-Hayat M, Canivet M, Peries J, Emanoil-Ravier R (1991) Further characterization of the gapped DNA intermediates of human spumavirus: evidence for a dual initiation of plus-strand DNA synthesis. J Gen Virol 72:605–608

    PubMed  CAS  Google Scholar 

  117. Peters K, Barg N, Gärtner K, Rethwilm A (2008) Complex effects of foamy virus central purine-rich regions on viral replication. Virology 373:51–60

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Dirk Lindemann (Dresden, Germany) and Jochen Bodem (Würzburg, Germany) for critical comments on the manuscript and the DFG for financial support. Work of the authors was supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Rethwilm.

Additional information

This article is published as part of the Special Issue on Pathogen Variation and Host Response in Infectious Disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rethwilm, A. Molecular biology of foamy viruses. Med Microbiol Immunol 199, 197–207 (2010). https://doi.org/10.1007/s00430-010-0158-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-010-0158-x

Keywords

Navigation