Skip to main content

Advertisement

Log in

Virulence determinants involved in differential host niche adaptation of Neisseria meningitidis and Neisseria gonorrhoeae

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Neisseria meningitidis and Neisseria gonorrhoeae are the only pathogenic species of the genus Neisseria. Although these two species are closely related, they specialized on survival in completely different environments within the human host—the nasopharynx in the case of N. meningitidis versus the urogenital tract in the case of N. gonorrhoeae. The genetic background of these differences has not yet been determined. Here, we present a comparison of all characterized transcriptional regulators in these species, delineating analogous functions and disclosing differential functional developments of these DNA-binding proteins with a special focus on the recently characterized regulator FarR and its contribution to divergent host niche adaptation in the two Neisseria spp. Furthermore, we summarize the present knowledge on two-partner secretion systems in meningococci, highlighting their overall expression among meningococcal strains in contrast to the complete absence in gonococci. Concluding, the decisive role of these two entirely different factors in host niche adaptation of the two human pathogenic Neisseria species is depicted, illuminating another piece of the puzzle to locate the molecular basis of their differences in preferred colonization sites and pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cartwright KA, Stuart JM, Jones DM, Noah ND (1987) The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol Infect 99(3):591–601

    Article  PubMed  CAS  Google Scholar 

  2. Stephens DS (1999) Uncloaking the meningococcus: dynamics of carriage and disease. Lancet 353(9157):941–942

    Article  PubMed  CAS  Google Scholar 

  3. Tikhomirov E, Santamaria M, Esteves K (1997) Meningococcal disease: public health burden and control. World Health Stat Q 50(3–4):170–177

    PubMed  CAS  Google Scholar 

  4. Tzeng YL, Stephens DS (2000) Epidemiology and pathogenesis of Neisseria meningitidis. Microbes Infect 2(6):687–700

    Article  PubMed  CAS  Google Scholar 

  5. Lapeyssonnie L (1963) Cerebrospinal meningitis in Africa. Bull World Health Organ 28(SUPPL):1–114

    PubMed  Google Scholar 

  6. Yazdankhah SP, Caugant DA (2004) Neisseria meningitidis: an overview of the carriage state. J Med Microbiol 53(Pt 9):821–832

    Article  PubMed  Google Scholar 

  7. Knaust A, Weber MV, Hammerschmidt S, Bergmann S, Frosch M, Kurzai O (2007) Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J Bacteriol 189(8):3246–3255

    Article  PubMed  CAS  Google Scholar 

  8. Gerbase AC, Rowley JT, Heymann DH, Berkley SF, Piot P (1998) Global prevalence and incidence estimates of selected curable STDs. Sex Transm Infect 74(Suppl 1):S12–S16

    PubMed  Google Scholar 

  9. Fenton KA, Lowndes CM (2004) Recent trends in the epidemiology of sexually transmitted infections in the European Union. Sex Transm Infect 80(4):255–263

    Article  PubMed  CAS  Google Scholar 

  10. Soper DE (1994) Pelvic inflammatory disease. Infect Dis Clin North Am 8(4):821–840

    PubMed  CAS  Google Scholar 

  11. Edwards JL, Apicella MA (2004) The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 17(4):965–981 (table of contents)

    Article  PubMed  CAS  Google Scholar 

  12. Darville T (1999) Gonorrhea. Pediatr Rev 20(4):125–128

    Article  PubMed  CAS  Google Scholar 

  13. Segal E, Hagblom P, Seifert HS, So M (1986) Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. Proc Natl Acad Sci U S A 83(7):2177–2181

    Article  PubMed  CAS  Google Scholar 

  14. Mandrell RE, Apicella MA (1993) Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiology 187(3–5):382–402

    PubMed  CAS  Google Scholar 

  15. Virji M (2009) Pathogenic neisseriae: surface modulation, pathogenesis and infection control. Nat Rev Microbiol 7(4):274–286

    Article  PubMed  CAS  Google Scholar 

  16. Schoen C, Blom J, Claus H, Schramm-Gluck A, Brandt P, Muller T, Goesmann A, Joseph B, Konietzny S, Kurzai O, Schmitt C, Friedrich T, Linke B, Vogel U, Frosch M (2008) Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc Natl Acad Sci U S A 105(9):3473–3478

    Article  PubMed  CAS  Google Scholar 

  17. Jolley KA, Wilson DJ, Kriz P, McVean G, Maiden MC (2005) The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. Mol Biol Evol 22(3):562–569

    Article  PubMed  CAS  Google Scholar 

  18. Claus H, Borrow R, Achtman M, Morelli G, Kantelberg C, Longworth E, Frosch M, Vogel U (2004) Genetics of capsule O-acetylation in serogroup C, W-135 and Y meningococci. Mol Microbiol 51(1):227–239

    Article  PubMed  CAS  Google Scholar 

  19. Elias J, Harmsen D, Claus H, Hellenbrand W, Frosch M, Vogel U (2006) Spatiotemporal analysis of invasive meningococcal disease, Germany. Emerg Infect Dis 12(11):1689–1695

    PubMed  Google Scholar 

  20. Perrin A, Bonacorsi S, Carbonnelle E, Talibi D, Dessen P, Nassif X, Tinsley C (2002) Comparative genomics identifies the genetic islands that distinguish Neisseria meningitidis, the agent of cerebrospinal meningitis, from other Neisseria species. Infect Immun 70(12):7063–7072

    Article  PubMed  CAS  Google Scholar 

  21. Davidsen T, Tonjum T (2006) Meningococcal genome dynamics. Nat Rev Microbiol 4(1):11–22

    Article  PubMed  CAS  Google Scholar 

  22. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ, Nelson WC, Gwinn ML, DeBoy R, Peterson JD, Hickey EK, Haft DH, Salzberg SL, White O, Fleischmann RD, Dougherty BA, Mason T, Ciecko A, Parksey DS, Blair E, Cittone H, Clark EB, Cotton MD, Utterback TR, Khouri H, Qin H, Vamathevan J, Gill J, Scarlato V, Masignani V, Pizza M, Grandi G, Sun L, Smith HO, Fraser CM, Moxon ER, Rappuoli R, Venter JC (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287(5459):1809–1815

    Article  PubMed  CAS  Google Scholar 

  23. Kroll JS, Wilks KE, Farrant JL, Langford PR (1998) Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc Natl Acad Sci U S A 95(21):12381–12385

    Article  PubMed  CAS  Google Scholar 

  24. Smith HO, Gwinn ML, Salzberg SL (1999) DNA uptake signal sequences in naturally transformable bacteria. Res Microbiol 150(9–10):603–616

    Article  PubMed  CAS  Google Scholar 

  25. Dietrich G, Kurz S, Hubner C, Aepinus C, Theiss S, Guckenberger M, Panzner U, Weber J, Frosch M (2003) Transcriptome analysis of Neisseria meningitidis during infection. J Bacteriol 185(1):155–164

    Article  PubMed  CAS  Google Scholar 

  26. Pareja E, Pareja-Tobes P, Manrique M, Pareja-Tobes E, Bonal J, Tobes R (2006) ExtraTrain: a database of extragenic regions and transcriptional information in prokaryotic organisms. BMC Microbiol 6:29

    Article  PubMed  CAS  Google Scholar 

  27. Deghmane AE, Petit S, Topilko A, Pereira Y, Giorgini D, Larribe M, Taha MK (2000) Intimate adhesion of Neisseria meningitidis to human epithelial cells is under the control of the crgA gene, a novel LysR-type transcriptional regulator. EMBO J 19(5):1068–1078

    Article  PubMed  CAS  Google Scholar 

  28. Deghmane AE, Giorgini D, Maigre L, Taha MK (2004) Analysis in vitro and in vivo of the transcriptional regulator CrgA of Neisseria meningitidis upon contact with target cells. Mol Microbiol 53(3):917–927

    Article  PubMed  CAS  Google Scholar 

  29. Deghmane AE, Giorgini D, Larribe M, Alonso JM, Taha MK (2002) Down-regulation of pili and capsule of Neisseria meningitidis upon contact with epithelial cells is mediated by CrgA regulatory protein. Mol Microbiol 43(6):1555–1564

    Article  PubMed  CAS  Google Scholar 

  30. Ren J, Sainsbury S, Combs SE, Capper RG, Jordan PW, Berrow NS, Stammers DK, Saunders NJ, Owens RJ (2007) The structure and transcriptional analysis of a global regulator from Neisseria meningitidis. J Biol Chem 282(19):14655–14664

    Article  PubMed  CAS  Google Scholar 

  31. Delany I, Rappuoli R, Scarlato V (2004) Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 52(4):1081–1090

    Article  PubMed  CAS  Google Scholar 

  32. Delany I, Grifantini R, Bartolini E, Rappuoli R, Scarlato V (2006) Effect of Neisseria meningitidis fur mutations on global control of gene transcription. J Bacteriol 188(7):2483–2492

    Article  PubMed  CAS  Google Scholar 

  33. Grifantini R, Sebastian S, Frigimelica E, Draghi M, Bartolini E, Muzzi A, Rappuoli R, Grandi G, Genco CA (2003) Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proc Natl Acad Sci U S A 100(16):9542–9547

    Article  PubMed  CAS  Google Scholar 

  34. Mellin JR, Goswami S, Grogan S, Tjaden B, Genco CA (2007) A novel fur- and iron-regulated small RNA, NrrF, is required for indirect fur-mediated regulation of the sdhA and sdhC genes in Neisseria meningitidis. J Bacteriol 189(10):3686–3694

    Article  PubMed  CAS  Google Scholar 

  35. Bartolini E, Frigimelica E, Giovinazzi S, Galli G, Shaik Y, Genco C, Welsch JA, Granoff DM, Grandi G, Grifantini R (2006) Role of FNR and FNR-regulated, sugar fermentation genes in Neisseria meningitidis infection. Mol Microbiol 60(4):963–972

    Article  PubMed  CAS  Google Scholar 

  36. Edwards J, Cole LJ, Green JB, Thomson MJ, Wood AJ, Whittingham JL, Moir JW (2010) Binding to DNA protects Neisseria meningitidis fumarate and nitrate reductase regulator (FNR) from oxygen. J Biol Chem 285(2):1105–1112

    Article  PubMed  CAS  Google Scholar 

  37. Rock JD, Mahnane MR, Anjum MF, Shaw JG, Read RC, Moir JW (2005) The pathogen Neisseria meningitidis requires oxygen, but supplements growth by denitrification. Nitrite, nitric oxide and oxygen control respiratory flux at genetic and metabolic levels. Mol Microbiol 58(3):800–809

    Article  PubMed  CAS  Google Scholar 

  38. Rock JD, Moir JW (2005) Microaerobic denitrification in Neisseria meningitidis. Biochem Soc Trans 33(Pt 1):134–136

    PubMed  CAS  Google Scholar 

  39. Rock JD, Thomson MJ, Read RC, Moir JW (2007) Regulation of denitrification genes in Neisseria meningitidis by nitric oxide and the repressor NsrR. J Bacteriol 189(3):1138–1144

    Article  PubMed  CAS  Google Scholar 

  40. Heurlier K, Thomson MJ, Aziz N, Moir JW (2008) The nitric oxide (NO)-sensing repressor NsrR of Neisseria meningitidis has a compact regulon of genes involved in NO synthesis and detoxification. J Bacteriol 190(7):2488–2495

    Article  PubMed  CAS  Google Scholar 

  41. Jackson LA, Ducey TF, Day MW, Zaitshik JB, Orvis J, Dyer DW (2010) Transcriptional and functional analysis of the Neisseria gonorrhoeae Fur regulon. J Bacteriol 192(1):77–85

    Article  PubMed  CAS  Google Scholar 

  42. Ducey TF, Carson MB, Orvis J, Stintzi AP, Dyer DW (2005) Identification of the iron-responsive genes of Neisseria gonorrhoeae by microarray analysis in defined medium. J Bacteriol 187(14):4865–4874

    Article  PubMed  CAS  Google Scholar 

  43. Ducey TF, Jackson L, Orvis J, Dyer DW (2009) Transcript analysis of nrrF, a Fur repressed sRNA of Neisseria gonorrhoeae. Microb Pathog 46(3):166–170

    Article  PubMed  CAS  Google Scholar 

  44. Desai PJ, Angerer A, Genco CA (1996) Analysis of Fur binding to operator sequences within the Neisseria gonorrhoeae fbpA promoter. J Bacteriol 178(16):5020–5023

    PubMed  CAS  Google Scholar 

  45. Overton TW, Whitehead R, Li Y, Snyder LA, Saunders NJ, Smith H, Cole JA (2006) Coordinated regulation of the Neisseria gonorrhoeae-truncated denitrification pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite-insensitive NarQ-NarP. J Biol Chem 281(44):33115–33126

    Article  PubMed  CAS  Google Scholar 

  46. Whitehead RN, Overton TW, Snyder LA, McGowan SJ, Smith H, Cole JA, Saunders NJ (2007) The small FNR regulon of Neisseria gonorrhoeae: comparison with the larger Escherichia coli FNR regulon and interaction with the NarQ-NarP regulon. BMC Genomics 8:35

    Article  PubMed  CAS  Google Scholar 

  47. Isabella V, Wright LF, Barth K, Spence JM, Grogan S, Genco CA, Clark VL (2008) Cis- and trans-acting elements involved in regulation of norB (norZ), the gene encoding nitric oxide reductase in Neisseria gonorrhoeae. Microbiology 154(Pt 1):226–239

    Article  PubMed  CAS  Google Scholar 

  48. Isabella VM, Lapek JD Jr, Kennedy EM, Clark VL (2009) Functional analysis of NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae. Mol Microbiol 71(1):227–239

    Article  PubMed  CAS  Google Scholar 

  49. De Reuse H, Taha MK (1997) RegF, an SspA homologue, regulates the expression of the Neisseria gonorrhoeae pilE gene. Res Microbiol 148(4):289–303

    Article  PubMed  Google Scholar 

  50. Kidd SP, Potter AJ, Apicella MA, Jennings MP, McEwan AG (2005) NmlR of Neisseria gonorrhoeae: a novel redox responsive transcription factor from the MerR family. Mol Microbiol 57(6):1676–1689

    Article  PubMed  CAS  Google Scholar 

  51. Seib KL, Wu HJ, Srikhanta YN, Edwards JL, Falsetta ML, Hamilton AJ, Maguire TL, Grimmond SM, Apicella MA, McEwan AG, Jennings MP (2007) Characterization of the OxyR regulon of Neisseria gonorrhoeae. Mol Microbiol 63(1):54–68

    Article  PubMed  CAS  Google Scholar 

  52. Seib KL, Wu HJ, Kidd SP, Apicella MA, Jennings MP, McEwan AG (2006) Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol Mol Biol Rev 70(2):344–361

    Article  PubMed  CAS  Google Scholar 

  53. Tseng HJ, McEwan AG, Apicella MA, Jennings MP (2003) OxyR acts as a repressor of catalase expression in Neisseria gonorrhoeae. Infect Immun 71(1):550–556

    Article  PubMed  CAS  Google Scholar 

  54. Mongkolsuk S, Helmann JD (2002) Regulation of inducible peroxide stress responses. Mol Microbiol 45(1):9–15

    Article  PubMed  CAS  Google Scholar 

  55. Wu HJ, Seib KL, Srikhanta YN, Kidd SP, Edwards JL, Maguire TL, Grimmond SM, Apicella MA, McEwan AG, Jennings MP (2006) PerR controls Mn-dependent resistance to oxidative stress in Neisseria gonorrhoeae. Mol Microbiol 60(2):401–416

    Article  PubMed  CAS  Google Scholar 

  56. Seib KL, Tseng HJ, McEwan AG, Apicella MA, Jennings MP (2004) Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles. J Infect Dis 190(1):136–147

    Article  PubMed  CAS  Google Scholar 

  57. Hagman KE, Shafer WM (1995) Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae. J Bacteriol 177(14):4162–4165

    PubMed  CAS  Google Scholar 

  58. Hagman KE, Pan W, Spratt BG, Balthazar JT, Judd RC, Shafer WM (1995) Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141(Pt 3):611–622

    Article  PubMed  CAS  Google Scholar 

  59. Folster JP, Johnson PJ, Jackson L, Dhulipali V, Dyer DW, Shafer WM (2009) MtrR modulates rpoH expression and levels of antimicrobial resistance in Neisseria gonorrhoeae. J Bacteriol 191(1):287–297

    Article  PubMed  CAS  Google Scholar 

  60. Warner DM, Shafer WM, Jerse AE (2008) Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol 70(2):462–478

    Article  PubMed  CAS  Google Scholar 

  61. Lucas CE, Balthazar JT, Hagman KE, Shafer WM (1997) The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J Bacteriol 179(13):4123–4128

    PubMed  CAS  Google Scholar 

  62. Folster JP, Dhulipala V, Nicholas RA, Shafer WM (2007) Differential regulation of ponA and pilMNOPQ expression by the MtrR transcriptional regulatory protein in Neisseria gonorrhoeae. J Bacteriol 189(13):4569–4577

    Article  PubMed  CAS  Google Scholar 

  63. Lee EH, Shafer WM (1999) The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol Microbiol 33(4):839–845

    Article  PubMed  CAS  Google Scholar 

  64. Lee EH, Rouquette-Loughlin C, Folster JP, Shafer WM (2003) FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J Bacteriol 185(24):7145–7152

    Article  PubMed  CAS  Google Scholar 

  65. Kabara JJ, Marshall DL (2005) Medium-chain fatty acids and esters. In: Davidson PM, Sofos JN, Branen AL (eds) Antimicrobials in food, 3rd edn. Taylor and Francis Group LLC, UK, pp 328–352

    Google Scholar 

  66. Sheu CW, Freese E (1973) Lipopolysaccharide layer protection of gram-negative bacteria against inhibition by long-chain fatty acids. J Bacteriol 115(3):869–875

    PubMed  CAS  Google Scholar 

  67. Miller RD, Brown KE, Morse SA (1977) Inhibitory action of fatty acids on the growth of Neisseria gonorrhoeae. Infect Immun 17(2):303–312

    PubMed  CAS  Google Scholar 

  68. Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG (2005) Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett 579(23):5157–5162

    Article  PubMed  CAS  Google Scholar 

  69. Wertz PW, Michniak BB (2000) Sebum. Cosmeceuticals: drugs vs. cosmetics. Marcel Dekker Inc, New York

    Google Scholar 

  70. Stevens A, Lowe JS (2000) Pathology, chap 12, 2nd edn. Mosby, Edinburgh, pp 223–237

  71. Drake DR, Brogden KA, Dawson DV, Wertz PW (2008) Thematic review series: skin lipids. Antimicrobial lipids at the skin surface. J Lipid Res 49(1):4–11

    Article  PubMed  CAS  Google Scholar 

  72. Freese E, Sheu CW, Galliers E (1973) Function of lipophilic acids as antimicrobial food additives. Nature 241(5388):321–325

    Article  PubMed  CAS  Google Scholar 

  73. Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2(1):23–28

    PubMed  CAS  Google Scholar 

  74. Galbraith H, Miller TB (1973) Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J Appl Bacteriol 36(4):659–675

    PubMed  CAS  Google Scholar 

  75. Schielke S, Huebner C, Spatz C, Nagele V, Ackermann N, Frosch M, Kurzai O, Schubert-Unkmeir A (2009) Expression of the meningococcal adhesin NadA is controlled by a transcriptional regulator of the MarR family. Mol Microbiol 72(4):1054–1067

    Article  PubMed  CAS  Google Scholar 

  76. Delahay RM, Robertson BD, Balthazar JT, Shafer WM, Ison CA (1997) Involvement of the gonococcal MtrE protein in the resistance of Neisseria gonorrhoeae to toxic hydrophobic agents. Microbiology 143(Pt 7):2127–2133

    Article  PubMed  CAS  Google Scholar 

  77. Rouquette-Loughlin C, Stojiljkovic I, Hrobowski T, Balthazar JT, Shafer WM (2002) Inducible, but not constitutive, resistance of gonococci to hydrophobic agents due to the MtrC-MtrD-MtrE efflux pump requires TonB-ExbB-ExbD proteins. Antimicrob Agents Chemother 46(2):561–565

    Article  PubMed  CAS  Google Scholar 

  78. Sarubbi FA Jr, Sparling PF, Blackman E, Lewis E (1975) Loss of low-level antibiotic resistance in Neisseria gonorrhoeae due to env mutations. J Bacteriol 124(2):750–756

    PubMed  CAS  Google Scholar 

  79. Guymon LF, Sparling PF (1975) Altered crystal violet permeability and lytic behavior in antibiotic-resistant and -sensitive mutants of Neisseria gonorrhoeae. J Bacteriol 124(2):757–763

    PubMed  CAS  Google Scholar 

  80. Miller RD, Morse SA (1977) Binding of progesterone to Neisseria gonorrhoeae and other gram-negative bacteria. Infect Immun 16(1):115–123

    PubMed  CAS  Google Scholar 

  81. Lysko PG, Morse SA (1981) Neisseria gonorrhoeae cell envelope: permeability to hydrophobic molecules. J Bacteriol 145(2):946–952

    PubMed  CAS  Google Scholar 

  82. Ley HL, Mueller JH (1946) On the isolation from agar of an inhibitor for Neisseria gonorrhoeae. J Bacteriol 52(4):453–460

    CAS  Google Scholar 

  83. Perez-Rueda E, Collado-Vides J (2001) Common history at the origin of the position-function correlation in transcriptional regulators in Archaea and bacteria. J Mol Evol 53(3):172–179

    Article  PubMed  CAS  Google Scholar 

  84. Clark KL, Halay ED, Lai E, Burley SK (1993) Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364(6436):412–420

    Article  PubMed  CAS  Google Scholar 

  85. Seoane AS, Levy SB (1995) Characterization of MarR, the repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli. J Bacteriol 177(12):3414–3419

    PubMed  CAS  Google Scholar 

  86. Alekshun MN, Levy SB (1999) The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 7(10):410–413

    Article  PubMed  CAS  Google Scholar 

  87. Wilkinson SP, Grove A (2004) HucR, a novel uric acid-responsive member of the MarR family of transcriptional regulators from Deinococcus radiodurans. J Biol Chem 279(49):51442–51450

    Article  PubMed  CAS  Google Scholar 

  88. Hong M, Fuangthong M, Helmann JD, Brennan RG (2005) Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family. Mol Cell 20(1):131–141

    Article  PubMed  CAS  Google Scholar 

  89. Wilkinson SP, Grove A (2006) Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol 8(1):51–62

    PubMed  Google Scholar 

  90. Ellison DW, Miller VL (2006) Regulation of virulence by members of the MarR/SlyA family. Curr Opin Microbiol 9(2):153–159

    Article  PubMed  CAS  Google Scholar 

  91. Wei K, Tang DJ, He YQ, Feng JX, Jiang BL, Lu GT, Chen B, Tang JL (2007) hpaR, a putative marR family transcriptional regulator, is positively controlled by HrpG and HrpX and involved in the pathogenesis, hypersensitive response, and extracellular protease production of Xanthomonas campestris pathovar campestris. J Bacteriol 189(5):2055–2062

    Article  PubMed  CAS  Google Scholar 

  92. Lim D, Poole K, Strynadka NC (2002) Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Biol Chem 277(32):29253–29259

    Article  PubMed  CAS  Google Scholar 

  93. Luong TT, Newell SW, Lee CY (2003) Mgr, a novel global regulator in Staphylococcus aureus. J Bacteriol 185(13):3703–3710

    Article  PubMed  CAS  Google Scholar 

  94. Truong-Bolduc QC, Hooper DC (2007) The transcriptional regulators NorG and MgrA modulate resistance to both quinolones and beta-lactams in Staphylococcus aureus. J Bacteriol 189(8):2996–3005

    Article  PubMed  CAS  Google Scholar 

  95. Claus H, Maiden MC, Maag R, Frosch M, Vogel U (2002) Many carried meningococci lack the genes required for capsule synthesis and transport. Microbiology 148(Pt 6):1813–1819

    PubMed  CAS  Google Scholar 

  96. Claus H, Maiden MC, Wilson DJ, McCarthy ND, Jolley KA, Urwin R, Hessler F, Frosch M, Vogel U (2005) Genetic analysis of meningococci carried by children and young adults. J Infect Dis 191(8):1263–1271

    Article  PubMed  Google Scholar 

  97. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M, Jennings GT, Baldi L, Bartolini E, Capecchi B, Galeotti CL, Luzzi E, Manetti R, Marchetti E, Mora M, Nuti S, Ratti G, Santini L, Savino S, Scarselli M, Storni E, Zuo P, Broeker M, Hundt E, Knapp B, Blair E, Mason T, Tettelin H, Hood DW, Jeffries AC, Saunders NJ, Granoff DM, Venter JC, Moxon ER, Grandi G, Rappuoli R (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287(5459):1816–1820

    Article  PubMed  CAS  Google Scholar 

  98. Comanducci M, Bambini S, Brunelli B, Adu-Bobie J, Arico B, Capecchi B, Giuliani MM, Masignani V, Santini L, Savino S, Granoff DM, Caugant DA, Pizza M, Rappuoli R, Mora M (2002) NadA, a novel vaccine candidate of Neisseria meningitidis. J Exp Med 195(11):1445–1454

    Article  PubMed  CAS  Google Scholar 

  99. Bowe F, Lavelle EC, McNeela EA, Hale C, Clare S, Arico B, Giuliani MM, Rae A, Huett A, Rappuoli R, Dougan G, Mills KH (2004) Mucosal vaccination against serogroup B meningococci: induction of bactericidal antibodies and cellular immunity following intranasal immunization with NadA of Neisseria meningitidis and mutants of Escherichia coli heat-labile enterotoxin. Infect Immun 72(7):4052–4060

    Article  PubMed  CAS  Google Scholar 

  100. Giuliani MM, Adu-Bobie J, Comanducci M, Arico B, Savino S, Santini L, Brunelli B, Bambini S, Biolchi A, Capecchi B, Cartocci E, Ciucchi L, Di Marcello F, Ferlicca F, Galli B, Luzzi E, Masignani V, Serruto D, Veggi D, Contorni M, Morandi M, Bartalesi A, Cinotti V, Mannucci D, Titta F, Ovidi E, Welsch JA, Granoff D, Rappuoli R, Pizza M (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103(29):10834–10839

    Article  PubMed  CAS  Google Scholar 

  101. Comanducci M, Bambini S, Caugant DA, Mora M, Brunelli B, Capecchi B, Ciucchi L, Rappuoli R, Pizza M (2004) NadA diversity and carriage in Neisseria meningitidis. Infect Immun 72(7):4217–4223

    Article  PubMed  CAS  Google Scholar 

  102. Martin P, van de Ven T, Mouchel N, Jeffries AC, Hood DW, Moxon ER (2003) Experimentally revised repertoire of putative contingency loci in Neisseria meningitidis strain MC58: evidence for a novel mechanism of phase variation. Mol Microbiol 50(1):245–257

    Article  PubMed  CAS  Google Scholar 

  103. Jacob-Dubuisson F, Fernandez R, Coutte L (2004) Protein secretion through autotransporter and two-partner pathways. Biochim Biophys Acta 1694(1–3):235–257

    Article  PubMed  CAS  Google Scholar 

  104. Jacob-Dubuisson F, Locht C, Antoine R (2001) Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol 40(2):306–313

    Article  PubMed  CAS  Google Scholar 

  105. Cotter PA, Yuk MH, Mattoo S, Akerley BJ, Boschwitz J, Relman DA, Miller JF (1998) Filamentous hemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect Immun 66(12):5921–5929

    PubMed  CAS  Google Scholar 

  106. Braun V, Hobbie S, Ondraczek R (1992) Serratia marcescens forms a new type of cytolysin. FEMS Microbiol Lett 79(1–3):299–305

    PubMed  CAS  Google Scholar 

  107. Rojas CM, Ham JH, Deng WL, Doyle JJ, Collmer A (2002) HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A 99(20):13142–13147

    Article  PubMed  CAS  Google Scholar 

  108. Konninger UW, Hobbie S, Benz R, Braun V (1999) The haemolysin-secreting ShlB protein of the outer membrane of Serratia marcescens: determination of surface-exposed residues and formation of ion-permeable pores by ShlB mutants in artificial lipid bilayer membranes. Mol Microbiol 32(6):1212–1225

    Article  PubMed  CAS  Google Scholar 

  109. Surana NK, Grass S, Hardy GG, Li H, Thanassi DG, Geme JW III (2004) Evidence for conservation of architecture and physical properties of Omp85-like proteins throughout evolution. Proc Natl Acad Sci U S A 101(40):14497–14502

    Article  PubMed  CAS  Google Scholar 

  110. Guedin S, Willery E, Tommassen J, Fort E, Drobecq H, Locht C, Jacob-Dubuisson F (2000) Novel topological features of FhaC, the outer membrane transporter involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J Biol Chem 275(39):30202–30210

    Article  PubMed  CAS  Google Scholar 

  111. Chevalier N, Moser M, Koch HG, Schimz KL, Willery E, Locht C, Jacob-Dubuisson F, Muller M (2004) Membrane targeting of a bacterial virulence factor harbouring an extended signal peptide. J Mol Microbiol Biotechnol 8(1):7–18

    Article  PubMed  CAS  Google Scholar 

  112. de Keyzer J, van der Does C, Driessen AJ (2003) The bacterial translocase: a dynamic protein channel complex. Cell Mol Life Sci 60(10):2034–2052

    Article  PubMed  CAS  Google Scholar 

  113. Jacob-Dubuisson F, Buisine C, Willery E, Renauld-Mongenie G, Locht C (1997) Lack of functional complementation between Bordetella pertussis filamentous hemagglutinin and Proteus mirabilis HpmA hemolysin secretion machineries. J Bacteriol 179(3):775–783

    PubMed  CAS  Google Scholar 

  114. Clantin B, Hodak H, Willery E, Locht C, Jacob-Dubuisson F, Villeret V (2004) The crystal structure of filamentous hemagglutinin secretion domain and its implications for the two-partner secretion pathway. Proc Natl Acad Sci U S A 101(16):6194–6199

    Article  PubMed  CAS  Google Scholar 

  115. Schonherr R, Tsolis R, Focareta T, Braun V (1993) Amino acid replacements in the Serratia marcescens haemolysin ShIA define sites involved in activation and secretion. Mol Microbiol 9(6):1229–1237

    Article  PubMed  CAS  Google Scholar 

  116. Locht C, Bertin P, Menozzi FD, Renauld G (1993) The filamentous haemagglutinin, a multifaceted adhesion produced by virulent Bordetella spp. Mol Microbiol 9(4):653–660

    Article  PubMed  CAS  Google Scholar 

  117. Kimura A, Mountzouros KT, Relman DA, Falkow S, Cowell JL (1990) Bordetella pertussis filamentous hemagglutinin: evaluation as a protective antigen and colonization factor in a mouse respiratory infection model. Infect Immun 58(1):7–16

    PubMed  CAS  Google Scholar 

  118. Patel SS, Wagstaff AJ (1996) A cellular pertussis vaccine (Infanrix-DTPa; SB-3). A review of its immunogenicity, protective efficacy and tolerability in the prevention of Bordetella pertussis infection. Drugs 52(2):254–275

    Article  PubMed  CAS  Google Scholar 

  119. Klee SR, Nassif X, Kusecek B, Merker P, Beretti JL, Achtman M, Tinsley CR (2000) Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae. Infect Immun 68(4):2082–2095

    Article  PubMed  CAS  Google Scholar 

  120. Schmitt C, Turner D, Boesl M, Abele M, Frosch M, Kurzai O (2007) A functional two-partner secretion system contributes to adhesion of Neisseria meningitidis to epithelial cells. J Bacteriol 189(22):7968–7976

    Article  PubMed  CAS  Google Scholar 

  121. van Ulsen P, Tommassen J (2006) Protein secretion and secreted proteins in pathogenic Neisseriaceae. FEMS Microbiol Rev 30(2):292–319

    Article  PubMed  CAS  Google Scholar 

  122. Parkhill J, Achtman M, James KD, Bentley SD, Churcher C, Klee SR, Morelli G, Basham D, Brown D, Chillingworth T, Davies RM, Davis P, Devlin K, Feltwell T, Hamlin N, Holroyd S, Jagels K, Leather S, Moule S, Mungall K, Quail MA, Rajandream MA, Rutherford KM, Simmonds M, Skelton J, Whitehead S, Spratt BG, Barrell BG (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404(6777):502–506

    Article  PubMed  CAS  Google Scholar 

  123. Bentley SD, Vernikos GS, Snyder LA, Churcher C, Arrowsmith C, Chillingworth T, Cronin A, Davis PH, Holroyd NE, Jagels K, Maddison M, Moule S, Rabbinowitsch E, Sharp S, Unwin L, Whitehead S, Quail MA, Achtman M, Barrell B, Saunders NJ, Parkhill J (2007) Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet 3(2):e23

    Article  PubMed  CAS  Google Scholar 

  124. Snyder LA, Saunders NJ (2006) The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as ‘virulence genes’. BMC Genomics 7:128

    Article  PubMed  CAS  Google Scholar 

  125. Julio SM, Cotter PA (2005) Characterization of the filamentous hemagglutinin-like protein FhaS in Bordetella bronchiseptica. Infect Immun 73(8):4960–4971

    Article  PubMed  CAS  Google Scholar 

  126. Guedin S, Willery E, Locht C, Jacob-Dubuisson F (1998) Evidence that a globular conformation is not compatible with FhaC-mediated secretion of the Bordetella pertussis filamentous haemagglutinin. Mol Microbiol 29(3):763–774

    Article  PubMed  CAS  Google Scholar 

  127. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68(4):692–744

    Article  PubMed  CAS  Google Scholar 

  128. Barenkamp SJ, St Geme JW III (1994) Genes encoding high-molecular-weight adhesion proteins of nontypeable Haemophilus influenzae are part of gene clusters. Infect Immun 62(8):3320–3328

    PubMed  CAS  Google Scholar 

  129. Coutte L, Antoine R, Drobecq H, Locht C, Jacob-Dubuisson F (2001) Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J 20(18):5040–5048

    Article  PubMed  CAS  Google Scholar 

  130. Noel GJ, Barenkamp SJ, St Geme JW III, Haining WN, Mosser DM (1994) High-molecular-weight surface-exposed proteins of Haemophilus influenzae mediate binding to macrophages. J Infect Dis 169(2):425–429

    Article  PubMed  CAS  Google Scholar 

  131. Ishibashi Y, Relman DA, Nishikawa A (2001) Invasion of human respiratory epithelial cells by Bordetella pertussis: possible role for a filamentous hemagglutinin Arg-Gly-Asp sequence and alpha5beta1 integrin. Microb Pathog 30(5):279–288

    Article  PubMed  CAS  Google Scholar 

  132. Relman DA, Domenighini M, Tuomanen E, Rappuoli R, Falkow S (1989) Filamentous hemagglutinin of Bordetella pertussis: nucleotide sequence and crucial role in adherence. Proc Natl Acad Sci U S A 86(8):2637–2641

    Article  PubMed  CAS  Google Scholar 

  133. Saukkonen K, Cabellos C, Burroughs M, Prasad S, Tuomanen E (1991) Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J Exp Med 173(5):1143–1149

    Article  PubMed  CAS  Google Scholar 

  134. Tuomanen E, Weiss A, Rich R, Zak F, Zak O (1985) Filamentous hemagglutinin and pertussis toxin promote adherence of Bordetella pertussis to cilia. Dev Biol Stand 61:197–204

    PubMed  CAS  Google Scholar 

  135. Sternberg B, Gumpert J, Meyer HW, Reinhardt G (1986) Structures of liposome membranes as models for similar features of cytoplasmic membranes of bacteria. Acta Histochem Suppl 33:139–145

    PubMed  CAS  Google Scholar 

  136. Kurzai O, Schmitt C, Claus H, Vogel U, Frosch M, Kolb-Maurer A (2005) Carbohydrate composition of meningococcal lipopolysaccharide modulates the interaction of Neisseria meningitidis with human dendritic cells. Cell Microbiol 7(9):1319–1334

    Article  PubMed  CAS  Google Scholar 

  137. Virji M, Makepeace K, Ferguson DJ, Achtman M, Moxon ER (1993) Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Microbiol 10(3):499–510

    Article  PubMed  CAS  Google Scholar 

  138. Schmitt C, Villwock A, Kurzai O (2009) Recognition of meningococcal molecular patterns by innate immune receptors. Int J Med Microbiol 299(1):9–20

    Article  PubMed  CAS  Google Scholar 

  139. Virji M, Makepeace K, Peak IR, Ferguson DJ, Jennings MP, Moxon ER (1995) Opc- and pilus-dependent interactions of meningococci with human endothelial cells: molecular mechanisms and modulation by surface polysaccharides. Mol Microbiol 18(4):741–754

    Article  PubMed  CAS  Google Scholar 

  140. Tala A, Progida C, De Stefano M, Cogli L, Spinosa MR, Bucci C, Alifano P (2008) The HrpB-HrpA two-partner secretion system is essential for intracellular survival of Neisseria meningitidis. Cell Microbiol 10(12):2461–2482

    Article  PubMed  CAS  Google Scholar 

  141. Nikulin J, Panzner U, Frosch M, Schubert-Unkmeir A (2006) Intracellular survival and replication of Neisseria meningitidis in human brain microvascular endothelial cells. Int J Med Microbiol 296(8):553–558

    Article  PubMed  CAS  Google Scholar 

  142. Hadi HA, Wooldridge KG, Robinson K, Ala’Aldeen DA (2001) Identification and characterization of App: an immunogenic autotransporter protein of Neisseria meningitidis. Mol Microbiol 41(3):611–623

    Article  PubMed  CAS  Google Scholar 

  143. Neil RB, Apicella MA (2009) Role of HrpA in biofilm formation of Neisseria meningitidis and regulation of the hrpBAS transcripts. Infect Immun 77(6):2285–2293

    Article  PubMed  CAS  Google Scholar 

  144. Neisser A (1879) Über eine der Gonorrhoe eigenthümliche Micrococcenform. Centralbl Med Wiss 28:497–500

    Google Scholar 

  145. Vieusseaux M (1805) Mémoire sur la maladie qui a régné à Genève au printemps de. J Med Chir Pharmacol 11:163

    Google Scholar 

  146. Weichselbaum A (1887) Über die aetiologie der akuten meningitis cerebro-spinalis. Fortschr. Med. 5:573–583

    Google Scholar 

  147. Feavers IM, Maiden MC (1998) A gonococcal porA pseudogene: implications for understanding the evolution and pathogenicity of Neisseria gonorrhoeae. Mol Microbiol 30(3):647–656

    Article  PubMed  CAS  Google Scholar 

  148. Tinsley CR, Nassif X (1996) Analysis of the genetic differences between Neisseria meningitidis and Neisseria gonorrhoeae: two closely related bacteria expressing two different pathogenicities. Proc Natl Acad Sci U S A 93(20):11109–11114

    Article  PubMed  CAS  Google Scholar 

  149. Whittenbury R (1964) Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. J Gen Microbiol 35:13–26

    PubMed  CAS  Google Scholar 

  150. Archibald FS, Duong MN (1986) Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria. Infect Immun 51(2):631–641

    PubMed  CAS  Google Scholar 

  151. Willcox RR (1981) The rectum as viewed by the venereologist. Br J Vener Dis 57(1):1–6

    PubMed  CAS  Google Scholar 

  152. Shafer WM, Balthazar JT, Hagman KE, Morse SA (1995) Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology 141(Pt 4):907–911

    Article  PubMed  CAS  Google Scholar 

  153. McFarland L, Mietzner TA, Knapp JS, Sandstrom E, Holmes KK, Morse SA (1983) Gonococcal sensitivity to fecal lipids can be mediated by an Mtr-independent mechanism. J Clin Microbiol 18(1):121–127

    PubMed  CAS  Google Scholar 

  154. Jerse AE, Sharma ND, Simms AN, Crow ET, Snyder LA, Shafer WM (2003) A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 71(10):5576–5582

    Article  PubMed  CAS  Google Scholar 

  155. Abadi FJ, Carter PE, Cash P, Pennington TH (1996) Rifampin resistance in Neisseria meningitidis due to alterations in membrane permeability. Antimicrob Agents Chemother 40(3):646–651

    PubMed  CAS  Google Scholar 

  156. Correia FF, Inouye S, Inouye M (1986) A 26-base-pair repetitive sequence specific for Neisseria gonorrhoeae and Neisseria meningitidis genomic DNA. J Bacteriol 167(3):1009–1015

    PubMed  CAS  Google Scholar 

  157. Pan W, Spratt BG (1994) Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol 11(4):769–775

    Article  PubMed  CAS  Google Scholar 

  158. Rouquette-Loughlin CE, Balthazar JT, Hill SA, Shafer WM (2004) Modulation of the mtrCDE-encoded efflux pump gene complex of Neisseria meningitidis due to a Correia element insertion sequence. Mol Microbiol 54(3):731–741

    Article  PubMed  CAS  Google Scholar 

  159. Cathelyn JS, Ellison DW, Hinchliffe SJ, Wren BW, Miller VL (2007) The RovA regulons of Yersinia enterocolitica and Yersinia pestis are distinct: evidence that many RovA-regulated genes were acquired more recently than the core genome. Mol Microbiol 66(1):189–205

    Article  PubMed  CAS  Google Scholar 

  160. Capecchi B, Adu-Bobie J, Di Marcello F, Ciucchi L, Masignani V, Taddei A, Rappuoli R, Pizza M, Arico B (2005) Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Mol Microbiol 55(3):687–698

    Article  PubMed  CAS  Google Scholar 

  161. Meyers LA, Levin BR, Richardson AR, Stojiljkovic I (2003) Epidemiology, hypermutation, within-host evolution and the virulence of Neisseria meningitidis. Proc Biol Sci 270(1525):1667–1677

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work of the authors was supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Kurzai.

Additional information

This article is published as part of a Special Issue on Pathogen Variation and Host Response in Infectious Disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schielke, S., Frosch, M. & Kurzai, O. Virulence determinants involved in differential host niche adaptation of Neisseria meningitidis and Neisseria gonorrhoeae . Med Microbiol Immunol 199, 185–196 (2010). https://doi.org/10.1007/s00430-010-0150-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-010-0150-5

Keywords

Navigation