Skip to main content

Advertisement

Log in

What determines the success or failure of intracellular cutaneous parasites? Lessons learned from leishmaniasis

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Most parasitic skin infections are averted by very efficient strategies of preventing pathogen invasion. Innate immune cells such as mast cells, macrophages and dendritic cells are responsible for detecting parasites and for recruiting proinflammatory cells that help to contain and control the pathogen at sites of infection. This induces efficient adaptive immunity, which is crucially important for parasite control. Using the example of cutaneous leishmaniasis, we highlight how the skin utilizes different strategies to prevent skin infection and how containment of the infection to the skin site may reduce the harm that otherwise may result for the entire organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Herwaldt BL (1999) Leishmaniasis. Lancet 354:1191. doi:10.1016/S0140-6736(98)10178-2

    Article  PubMed  CAS  Google Scholar 

  2. Launois P, Tacchini-Cottier F, Parra-Lopez C, Louis JA (1998) Cytokines in parasitic diseases: the example of cutaneous leishmaniasis. Int Rev Immunol 17:157

    PubMed  CAS  Google Scholar 

  3. Solbach W, Laskay T (2000) The host response to Leishmania infection. Adv Immunol 74:275. doi:10.1016/S0065-2776(08)60912-8

    Article  PubMed  CAS  Google Scholar 

  4. Etges R, Muller I (1998) Progressive disease or protective immunity to Leishmania major infection: the result of a network of stimulatory and inhibitory interactions. J Mol Med 76:372. doi:10.1007/s001090050230

    Article  PubMed  CAS  Google Scholar 

  5. Dondji B, Duhlinska DD, Same-Ekobo A, Yimagou I (1998) Clinical and parasitological prevalence of cutaneous leishmaniasis in Mokolo focus, Far North Province of Cameroon. Bull Liais Doc OCEAC 31:40

    Google Scholar 

  6. Couppie P, Clyti E, Sainte-Marie D, Dedet JP, Carme B, Pradinaud R (2004) Disseminated cutaneous leishmaniasis due to Leishmania guyanensis: case of a patient with 425 lesions. Am J Trop Med Hyg 71:558

    PubMed  CAS  Google Scholar 

  7. Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2:845. doi:10.1038/nri933

    Article  PubMed  CAS  Google Scholar 

  8. Romagnani S (1991) Human TH1 and TH2 subsets: doubt no more. Immunol Today 12:256. doi:10.1016/0167-5699(91)90120-I

    Article  PubMed  CAS  Google Scholar 

  9. Rogers KA, DeKrey GK, Mbow ML, Gillespie RD, Brodskyn CI, Titus RG (2002) Type 1 and type 2 responses to Leishmania major. FEMS Microbiol Lett 209:1. doi:10.1111/j.1574-6968.2002.tb11101.x

    Article  PubMed  CAS  Google Scholar 

  10. Reed SG, Scott P (1993) T-cell and cytokine responses in leishmaniasis. Curr Opin Immunol 5:524. doi:10.1016/0952-7915(93)90033-O

    Article  PubMed  CAS  Google Scholar 

  11. Kane MM, Mosser DM (2001) The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol 166:1141

    PubMed  CAS  Google Scholar 

  12. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135. doi:10.1038/35100529

    Article  PubMed  CAS  Google Scholar 

  13. Lai Y, Gallo RL (2008) Toll-like receptors in skin infections and inflammatory diseases. Infect Disord Drug Targets 8:144

    PubMed  CAS  Google Scholar 

  14. Curry JL, Qin JZ, Bonish B, Carrick R, Bacon P, Panella J, Robinson J, Nickoloff BJ (2003) Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 127:178

    PubMed  CAS  Google Scholar 

  15. Song PI, Park YM, Abraham T, Harten B, Zivony A, Neparidze N, Armstrong CA, Ansel JC (2002) Human keratinocytes express functional CD14 and toll-like receptor 4. J Invest Dermatol 119:424. doi:10.1046/j.1523-1747.2002.01847.x

    Article  PubMed  CAS  Google Scholar 

  16. Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, Barnes PF, Rollinghoff M, Bolcskei PL, Wagner M, Akira S, Norgard MV, Belisle JT, Godowski PJ, Bloom BR, Modlin RL (2001) Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291:1544. doi:10.1126/science.291.5508.1544

    Article  PubMed  CAS  Google Scholar 

  17. Muraille E, De Trez C, Brait M, De Baetselier P, Leo O, Carlier Y (2003) Genetically resistant mice lacking MyD88-adapter protein display a high susceptibility to Leishmania major infection associated with a polarized Th2 response. J Immunol 170:4237

    PubMed  CAS  Google Scholar 

  18. Lopez Kostka S, Knop J, Konur A, Udey MC, von Stebut E (2006) Distinct roles for IL-1 receptor type I signaling in early versus established Leishmania major infections. J Invest Dermatol 126:1582. doi:10.1038/sj.jid.5700309

    Article  Google Scholar 

  19. Liszewski MK, Farries TC, Lublin DM, Rooney IA, Atkinson JP (1996) Control of the complement system. Adv Immunol 61:201. doi:10.1016/S0065-2776(08)60868-8

    Article  PubMed  CAS  Google Scholar 

  20. Asghar SS, Pasch MC (1998) Complement as a promiscuous signal transduction device. Lab Invest 78:1203

    PubMed  CAS  Google Scholar 

  21. Reis ES, Barbuto JA, Isaac L (2006) Human monocyte-derived dendritic cells are a source of several complement proteins. Inflamm Res 55:179. doi:10.1007/s00011-006-0068-y

    Article  PubMed  CAS  Google Scholar 

  22. Pasch MC, Van Den Bosch NH, Daha MR, Bos JD, Asghar SS (2000) Synthesis of complement components C3 and factor B in human keratinocytes is differentially regulated by cytokines. J Invest Dermatol 114:78. doi:10.1046/j.1523-1747.2000.00841.x

    Article  PubMed  CAS  Google Scholar 

  23. Katz Y, Nadiv O, Rapoport MJ, Loos M (2000) IL-17 regulates gene expression and protein synthesis of the complement system, C3 and factor B, in skin fibroblasts. Clin Exp Immunol 120:22. doi:10.1046/j.1365-2249.2000.01199.x

    Article  PubMed  CAS  Google Scholar 

  24. Fayyazi A, Sandau R, Duong LQ, Götze O, Radzun HJ, Schweyer S, Soruri A, Zwirner J (1999) C5a receptor and interleukin-6 are expressed in tissue macrophages and stimulated keratinocytes but not in pulmonary and intestinal epithelial cells. Am J Pathol 154:495

    PubMed  CAS  Google Scholar 

  25. Füreder W, Agis H, Willheim M, Bankl HC, Maier U, Kishi K, Müller MR, Czerwenka K, Radaszkiewicz T, Butterfield JH, Klappacher GW, Sperr WR, Oppermann M, Lechner K, Valent P (1995) Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/C5aR expression on skin mast cells. J Immunol 155:3152

    PubMed  Google Scholar 

  26. Wojta J, Kaun C, Zorn G, Ghannadan M, Hauswirth AW, Sperr WR, Fritsch G, Printz D, Binder BR, Schatzl G, Zwirner J, Maurer G, Huber K, Valent P (2002) C5a stimulates production of plasminogen activator inhibitor-1 in human mast cells and basophils. Blood 100:517. doi:10.1182/blood.V100.2.517

    Article  PubMed  CAS  Google Scholar 

  27. Werfel T, Kirchhoff K, Wittmann M, Begemann G, Kapp A, Heidenreich F, Götze O, Zwirner J (2000) Activated human T lymphocytes express a functional C3a receptor. J Immunol 165:6599

    PubMed  CAS  Google Scholar 

  28. Dominguez M, Moreno I, Aizpurua C, Torano A (2003) Early mechanisms of Leishmania infection in human blood. Microbes Infect 5:507. doi:10.1016/S1286-4579(03)00071-6

    Article  PubMed  CAS  Google Scholar 

  29. Itano AA, Jenkins MK (2003) Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 4:733. doi:10.1038/ni957

    Article  PubMed  CAS  Google Scholar 

  30. Germain RN, Jenkins MK (2004) In vivo antigen presentation. Curr Opin Immunol 16:120. doi:10.1016/j.coi.2003.11.001

    Article  PubMed  CAS  Google Scholar 

  31. Reis e Sousa C, Diebold SD, Edwards AD, Rogers N, Schulz O, Spörri R (2003) Regulation of dendritic cell function by microbial stimuli. Pathol Biol (Paris) 51:67. doi:10.1016/S0369-8114(03)00099-3

    CAS  Google Scholar 

  32. Ritter U, Meissner A, Scheidig C, Körner H (2004) CD8 alpha- and Langerin-negative dendritic cells, but not Langerhans cells, act as principal antigen-presenting cells in leishmaniasis. Eur J Immunol 34:1542. doi:10.1002/eji.200324586

    Article  PubMed  CAS  Google Scholar 

  33. Wu L, Dakic A (2004) Development of dendritic cell system. Cell Mol Immunol 1:112

    PubMed  Google Scholar 

  34. León B, López-Bravo M, Ardavín C (2007) Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26:519. doi:10.1016/j.immuni.2007.01.017

    Article  PubMed  Google Scholar 

  35. Baldwin T, Henri S, Curtis J, O’Keeffe M, Vremec D, Shortman K, Handman E (2004) Dendritic cell populations in Leishmania major-infected skin and draining lymph nodes. Infect Immun 72:1991. doi:10.1128/IAI.72.4.1991-2001.2004

    Article  PubMed  CAS  Google Scholar 

  36. Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D (2000) A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165:969

    PubMed  CAS  Google Scholar 

  37. von Stebut E, Metz M, Milon G, Knop J, Maurer M (2003) Early macrophage influx to sites of cutaneous granuloma formation is dependent on MIP-1α/β released from neutrophils recruited by mast cell-derived TNFα. Blood 101:210. doi:10.1182/blood-2002-03-0921

    Article  Google Scholar 

  38. Maurer M, Lopez Kostka S, Siebenhaar F, Moelle K, Metz M, Knop J, von Stebut E (2006) Skin mast cells control T cell-dependent host defense in Leishmania major infections. FASEB J 20:2460. doi:10.1096/fj.06-5860com

    Article  PubMed  CAS  Google Scholar 

  39. Maurer M, von Stebut E (2004) Macrophage inflammatory protein-1. Int J Biochem Cell Biol 36:1882–1886. doi:10.1016/j.biocel.2003.10.019

    Article  PubMed  CAS  Google Scholar 

  40. von Stebut E (2007) Cutaneous Leishmania infection: progress in pathogenesis research and experimental therapy. Exp Dermatol 16:340. doi:10.1111/j.1600-0625.2007.00554.x

    Article  Google Scholar 

  41. von Stebut E (2007) Immunology of cutaneous leishmaniasis: the role of mast cells, phagocytes and dendritic cells for protective immunity. Eur J Dermatol 17:115

    Google Scholar 

  42. Hornell TM, Beresford GW, Bushey A, Boss JM, Mellins ED (2003) Regulation of the class II MHC pathway in primary human monocytes by granulocyte-macrophage colony-stimulating factor. J Immunol 171:2374

    PubMed  CAS  Google Scholar 

  43. Woelbing F, Kostka SL, Moelle K, Belkaid Y, Sunderkoetter C, Verbeek S, Waisman A, Nigg AP, Knop J, Udey MC, von Stebut E (2006) Uptake of Leishmania major by dendritic cells is mediated by Fcgamma receptors and facilitates acquisition of protective immunity. J Exp Med 203:177. doi:10.1084/jem.20052288

    Article  PubMed  CAS  Google Scholar 

  44. Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, Andrew DP, Warnke R, Ruffing N, Kassam N, Wu L, Butcher EC (1999) The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400:776. doi:10.1038/23495

    Article  PubMed  CAS  Google Scholar 

  45. Campbell JJ, Butcher EC (2000) Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol 12:336. doi:10.1016/S0952-7915(00)00096-0

    Article  PubMed  CAS  Google Scholar 

  46. Soler D, Humphreys TL, Spinola SM, Campbell JJ (2003) CCR4 versus CCR10 in human cutaneous TH lymphocyte trafficking. Blood 101:1677. doi:10.1182/blood-2002-07-2348

    Article  PubMed  CAS  Google Scholar 

  47. Colantonio L, Iellem A, Sinigaglia F, D’Ambrosio D (2002) Skin-homing CLA+ T cells and regulatory CD25+ T cells represent major subsets of human peripheral blood memory T cells migrating in response to CCL1/I-309. Eur J Immunol 32:3506. doi:10.1002/1521-4141(200212)32:12<3506::AID-IMMU3506>3.0.CO;2-#

    Article  PubMed  CAS  Google Scholar 

  48. Koelle DM, Liu Z, McClurkan CM, Topp MS, Riddell SR, Pamer EG, Johnson AS, Wald A, Corey L (2002) Expression of cutaneous lymphocyte-associated antigen by CD8+ T cells specific for a skin-tropic virus. J Clin Invest 110:537

    PubMed  CAS  Google Scholar 

  49. Dudda JC, Martin SF (2004) Tissue targeting of T cells by DCs and microenvironments. Trends Immunol 25:417. doi:10.1016/j.it.2004.05.008

    Article  PubMed  CAS  Google Scholar 

  50. Homey B, Müller A, Zlotnik A (2002) Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2:175. doi:10.1038/nri748

    Article  PubMed  CAS  Google Scholar 

  51. Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J, Orozco R, Copeland NG, Jenkins NA, McEvoy LM, Zlotnik A (1999) CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci USA 96:14470. doi:10.1073/pnas.96.25.14470

    Article  PubMed  CAS  Google Scholar 

  52. Engeman T, Gorbachev AV, Kish DD, Fairchild RL (2004) The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites. J Leukoc Biol 76:941. doi:10.1189/jlb.0304193

    Article  PubMed  CAS  Google Scholar 

  53. Reis e Sousa C, Hieny S, Scharton-Kersten T, Jankovic D, Charest H, Germain RN, Sher A (1997) In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med 186:1819. doi:10.1084/jem.186.11.1819

    Article  PubMed  CAS  Google Scholar 

  54. von Stebut E, Belkaid Y, Jakob T, Sacks DL, Udey MC (1998) Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J Exp Med 188:1547. doi:10.1084/jem.188.8.1547

    Article  Google Scholar 

  55. Modlin RL (1994) Th1-Th2 paradigm: insights from leprosy. J Invest Dermatol 102:828. doi:10.1111/1523-1747.ep12381958

    Article  PubMed  CAS  Google Scholar 

  56. Iwakura Y, Ishigame H (2006) The IL-23/IL-17 axis in inflammation. J Clin Invest 116:1218. doi:10.1172/JCI28508

    Article  PubMed  CAS  Google Scholar 

  57. Wynn TA (2005) Th-17: a giant step from Th1 and Th2. Nat Immunol 6:1069. doi:10.1038/ni1105-1069

    Article  PubMed  CAS  Google Scholar 

  58. Tato CM, O’Shea JJ (2006) Immunology: what does it mean to be just 17? Nature 441:166. doi:10.1038/441166a

    Article  PubMed  CAS  Google Scholar 

  59. Lopez Kostka S, Dinges S, Iwakura Y, Udey MC, von Stebut E (2009) IL-17 contributes to disease susceptibility in cutaneous leishmaniasis. J Immunol 182: (in press). doi:10.4049/jimmunol.0713598

  60. Tacchini-Cottier F, Zweifel C, Belkaid Y, Mukankundiye C, Vasei M, Launois P, Milon G, Louis JA (2000) An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J Immunol 165:2628

    PubMed  CAS  Google Scholar 

  61. Ribeiro-Gomes FL, Otero AC, Gomes NA, Moniz-De-Souza MC, Cysne-Finkelstein L, Arnholdt AC, Calich VL, Coutinho SG, Lopes MF, DosReis GA (2004) Macrophage interactions with neutrophils regulate Leishmania major infection. J Immunol 172:4454

    PubMed  CAS  Google Scholar 

  62. Belkaid Y (2003) The role of CD4+CD25+ regulatory T cells in Leishmania infection. Expert Opin Biol Ther 3:875. doi:10.1517/14712598.3.6.875

    Article  PubMed  CAS  Google Scholar 

  63. Ou LS, Goleva E, Hall C, Leung DY (2004) T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J Allergy Clin Immunol 113:756. doi:10.1016/j.jaci.2004.01.772

    Article  PubMed  CAS  Google Scholar 

  64. Jonuleit H, Schmitt E, Steinbrink K, Enk AH (2001) Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol 22:394. doi:10.1016/S1471-4906(01)01952-4

    Article  PubMed  CAS  Google Scholar 

  65. Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, Wynn TA, Sacks DL (2001) The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194:1497. doi:10.1084/jem.194.10.1497

    Article  PubMed  CAS  Google Scholar 

  66. von Stebut E, Ehrchen JM, Belkaid Y, Lopez Kostka S, Mölle K, Knop J, Sunderkötter C, Udey MC (2003) IL-1α promotes Th1-differentiation and inhibits disease progression in Leishmania major-susceptible BALB/c mice. J Exp Med 198:191. doi:10.1084/jem.20030159

    Article  Google Scholar 

  67. Nigg AP, Zahn S, Rückerl D, Hölscher C, Yoshimoto T, Ehrchen JM, Wölbing F, Udey MC, von Stebut E (2007) Dendritic cell-derived IL-12p40 homodimer contributes to susceptibility in cutaneous leishmaniasis in BALB/c mice. J Immunol 178:7251

    PubMed  CAS  Google Scholar 

  68. Loser K, Beissert S (2007) Dendritic cells and T cells in the regulation of cutaneous immunity. Adv Dermatol 23:307–333. doi:10.1016/j.yadr.2007.07.014

    Article  PubMed  Google Scholar 

  69. Carrera L, Gazzinelli RT, Badolato R, Hieny S, Muller W, Kuhn R, Sacks DL (1996) Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J Exp Med 183:515. doi:10.1084/jem.183.2.515

    Article  PubMed  CAS  Google Scholar 

  70. Belkaid Y, Butcher B, Sacks DL (1998) Analysis of cytokine production by inflammatory mouse macrophages at the single-cell level: selective impairment of IL-12 induction in Leishmania-infected cells. Eur J Immunol 28:1389. doi:10.1002/(SICI)1521-4141(199804)28:04<1389::AID-IMMU1389>3.0.CO;2-1

    Article  PubMed  CAS  Google Scholar 

  71. Schönlau F, Scharffetter-Kochanek K, Grabbe S, Pietz B, Sorg C, Sunderkötter C (2000) In experimental leishmaniasis deficiency of CD18 results in parasite dissemination associated with altered macrophage functions and incomplete Th1 cell response. Eur J Immunol 30:2729. doi:10.1002/1521-4141(200009)30:9<2729::AID-IMMU2729>3.0.CO;2-3

    Article  PubMed  Google Scholar 

  72. Mosser DM, Brittingham A (1997) Leishmania, macrophages and complement: a tale of subversion and exploitation. Parasitology 115(Suppl):S9. doi:10.1017/S0031182097001789

    Article  PubMed  Google Scholar 

  73. Bogdan C, Röllinghoff M (1998) The immune response to Leishmania: mechanisms of parasite control and evasion. Int J Parasitol 28:121. doi:10.1016/S0020-7519(97)00169-0

    Article  PubMed  CAS  Google Scholar 

  74. Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nat Immunol 3:1041. doi:10.1038/ni1102-1041

    Article  PubMed  CAS  Google Scholar 

  75. Launois P, Maillard I, Pingel S, Swihart KG, Xénarios I, Acha-Orbea H, Diggelmann H, Locksley RM, MacDonald HR, Louis JA (1997) IL-4 rapidly produced by V beta 4 V alpha 8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 6:541. doi:10.1016/S1074-7613(00)80342-8

    Article  PubMed  CAS  Google Scholar 

  76. Julia V, Rassoulzadegan M, Glaichenhaus N (1996) Resistance to Leishmania major induced by tolerance to a single antigen. Science 274:421. doi:10.1126/science.274.5286.421

    Article  PubMed  CAS  Google Scholar 

  77. Malherbe L, Filippi C, Julia V, Foucras G, Moro M, Appel H, Wucherpfennig K, Guéry JC, Glaichenhaus N (2000) Selective activation and expansion of high-affinity CD4+ T cells in resistant mice upon infection with Leishmania major. Immunity 13:771. doi:10.1016/S1074-7613(00)00075-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Volkswagen-Stiftung (to M. Maurer, B. Dondji and E. von Stebut), the Deutsche Forschungsgemeinschaft (DFG, SFB 650 and SPP1394 to M. Maurer and SFB 490 and Ste 833/6-1 to E. von Stebut) and the Jürgen Manchot-Stiftung (to M. Maurer and E. von Stebut). The authors thank Omer B. K. Ngouateu for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther von Stebut.

Additional information

M. Maurer, B. Dondji and E. von Stebut contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, M., Dondji, B. & von Stebut, E. What determines the success or failure of intracellular cutaneous parasites? Lessons learned from leishmaniasis. Med Microbiol Immunol 198, 137–146 (2009). https://doi.org/10.1007/s00430-009-0114-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-009-0114-9

Keywords

Navigation