Skip to main content
Log in

Stage of primary infection with lymphocytic choriomeningitis virus determines predisposition or resistance of mice to secondary bacterial infections

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

We investigated the effect of a primary non-lethal infection with lymphocytic choriomeningitis virus (LCMV) on the course and outcome of a secondary infection with the Gram-negative Salmonella enterica serovar Typhimurium or the Gram-positive Listeria monocytogenes in mice. We found that at each stage of the viral infection the susceptibility of mice to bacterial super-infections changes dramatically and depends also on whether the secondary infection is a Gram-positive or Gram-negative one. The study shows that the outcome of the secondary infection is determined by a delicate balance between the overproduction of and the hypersensitivity to inflammatory cytokines (TNF-α and IFN-γ), as well as by the changes in blood leukocytes occurring in mice in the course of viral infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akira S, Sato S (2003) Toll-like receptors and their signaling mechanisms. Scand J Infect Dis 35:555–562

    Article  PubMed  CAS  Google Scholar 

  2. Della Chiesa M, Sivori S, Castriconi R, Marcenaro E, Moretta A (2005) Pathogen-induced private conversations between natural killer and dendritic cells. Trends Microbiol 13:128–136

    Article  PubMed  CAS  Google Scholar 

  3. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169–176

    Article  PubMed  CAS  Google Scholar 

  4. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  5. Kalis C, Kanzler B, Lembo A, Poltorak A, Galanos C, Freudenberg MA (2003) Toll-like receptor 4 expression levels determine the degree of LPS-susceptibility in mice. Eur J Immunol 33:798–805

    Article  PubMed  CAS  Google Scholar 

  6. Freudenberg MA, Merlin T, Gumenscheimer M, Kalis C, Landmann R, Galanos C (2001) Role of lipopolysaccharide susceptibility in the innate immune response to Salmonella typhimurium infection: LPS, a primary target for recognition of Gram-negative bacteria. Microbes Infect 3:1213–1222

    Article  PubMed  CAS  Google Scholar 

  7. von Jeney N, Gunther E, Jann K (1977) Mitogenic stimulation of murine spleen cells: relation to susceptibility to Salmonella infection. Infect Immun 15:26–33

    Google Scholar 

  8. Cross AS, Sadoff JC, Kelly N, Bernton E, Gemski P (1989) Pretreatment with recombinant murine tumor necrosis factor alpha/cachectin and murine interleukin 1 alpha protects mice from lethal bacterial infection. J Exp Med 169:2021–2027

    Article  PubMed  CAS  Google Scholar 

  9. Parant M, Parant F, Chedid L (1977) Inheritance of lipopolysaccharide-enhanced nonspecific resistance to infection and of susceptibility to endotoxic shock in lipopolysaccharide low-responder mice. Infect Immun 16:432–438

    PubMed  CAS  Google Scholar 

  10. Gumenscheimer M, Mitov I, Galanos C, Freudenberg MA (2002) Beneficial or deleterious effects of a preexisting hypersensitivity to bacterial components on the course and outcome of infection. Infect Immun 70:5596–5603

    Article  PubMed  CAS  Google Scholar 

  11. Galanos C, Freudenberg MA, Katschinski T, Salomao R, Mossmann H, Kumazawa Y (1992) Tumor necrosis factor and host response to endotoxin. In: Ryan JL, Morrison DC (eds) Bacterial endotoxic lipopolysaccharides. CRC, Boca Raton, pp 73–104

    Google Scholar 

  12. Heinzel FP (1990) The role of IFN-gamma in the pathology of experimental endotoxemia. J Immunol 145:2920–2924

    PubMed  CAS  Google Scholar 

  13. Ishibashi Y, Arai T (1990) Effect of gamma-interferon on phagosome–lysosome fusion in Salmonella typhimurium-infected murine macrophages. FEMS Microbiol Immunol 2:75–82

    PubMed  CAS  Google Scholar 

  14. Nauciel C, Espinasse-Maes F (1992) Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect Immun 60:450–454

    PubMed  CAS  Google Scholar 

  15. Tracey KJ, Cerami A (1994) Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 45:491–503

    Article  PubMed  CAS  Google Scholar 

  16. Chambaud I, Wroblewski H, Blanchard A (1999) Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol 7:493–499

    Article  PubMed  CAS  Google Scholar 

  17. Galanos C, Gumenscheimer M, Mühlradt PF, Jirillo E, Freudenberg MA (2000) MALP-2, a Mycoplasma lipopeptide with classical endotoxic properties: end of an era of LPS monopoly? J Endotox Res 6:471–476

    Article  CAS  Google Scholar 

  18. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549

    Article  PubMed  CAS  Google Scholar 

  19. Lipford GB, Heeg K, Wagner H (1998) Bacterial DNA as immune cell activator. Trends Microbiol 6:496–500

    Article  PubMed  CAS  Google Scholar 

  20. Halpern BN, Prevot AR, Biozzi G, Stiffel C, Mouton D, Morard JC, Bouthillier Y, Decreusefond C (1964) Stimulation of the phagocytic activity of the reticuloendothelial system by Corynebacterium Parvum. J Reticuloendothel Soc 83:77–96

    PubMed  CAS  Google Scholar 

  21. Nansen A, Christensen JP, Marker O, Thomsen AR (1997) Sensitization to lipopolysaccharide in mice with asymptomatic viral infection: role of T cell-dependent production of interferon-gamma. J Infect Dis 176:151–157

    Article  PubMed  CAS  Google Scholar 

  22. Nansen A, Randrup Thomsen A (2001) Viral infection causes rapid sensitization to lipopolysaccharide: central role of IFN-alpha beta. J Immunol 166:982–998

    PubMed  CAS  Google Scholar 

  23. Katschinski T, Galanos C, Coumbos A, Freudenberg MA (1992) Gamma interferon mediates Propionibacterium acnes-induced hypersensitivity to lipopolysaccharide in mice. Infect Immun 60:1994–2001

    PubMed  CAS  Google Scholar 

  24. Lembo A, Kalis C, Kirschning CJ, Mitolo V, Jirillo E, Wagner H, Galanos C, Freudenberg MA (2003) Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice. Infect Immun 71:6058–6062

    Article  PubMed  CAS  Google Scholar 

  25. Merlin T, Gumenscheimer M, Galanos C, Freudenberg MA (2001) TNF-alpha hyper-responses to Gram-negative and Gram-positive bacteria in Propionibacterium acnes primed or Salmonella typhimurium infected mice. J Endotoxin Res 7:157–163

    Article  PubMed  CAS  Google Scholar 

  26. Freudenberg MA, Galanos C (1996) Lipopolysaccharide-sensitivity of interferon-gamma-receptor deficient mice. J Endotox Res 3:291–298

    CAS  Google Scholar 

  27. Okamura H, Tsutsui H, Kashiwamura S, Yoshimoto T, Nakanishi K (1998) Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv Immunol 70:281–312

    Article  PubMed  CAS  Google Scholar 

  28. Trinchieri G (1998) Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol 70:83–243

    PubMed  CAS  Google Scholar 

  29. Freudenberg MA, Merlin T, Kalis C, Chvatchko Y, Stubig H, Galanos C (2002) Cutting edge: a murine, IL-12-independent pathway of IFN-gamma induction by gram-negative bacteria based on STAT4 activation by Type I IFN and IL-18 signaling. J Immunol 169:1665–1668

    PubMed  CAS  Google Scholar 

  30. Doughty L, Nguyen K, Durbin J, Biron C (2001) A role for IFN-alpha beta in virus infection-induced sensitization to endotoxin. J Immunol 166:2658–2664

    PubMed  CAS  Google Scholar 

  31. Merlin T, Sing A, Nielsen PJ, Galanos C, Freudenberg MA (2001) Inherited IL-12 unresponsiveness contributes to the high LPS resistance of the Lps(d) C57BL/10ScCr mouse. J Immunol 166:566–573

    PubMed  CAS  Google Scholar 

  32. Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu A, Gadina M, O’Shea JJ, Biron CA (2002) Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 297:2063–2066

    Article  PubMed  CAS  Google Scholar 

  33. van den Broek MF, Muller U, Huang S, Zinkernagel RM, Aguet M (1995) Immune defence in mice lacking type I and/or type II interferon receptors. Immunol Rev 148:5–18

    Article  PubMed  Google Scholar 

  34. Vogel SN, Hansen CT, Rosenstreich DL (1979) Characterization of a congenitally LPS-resistant, athymic mouse strain. J Immunol 122:619–622

    PubMed  CAS  Google Scholar 

  35. Galanos C, Luderitz O, Westphal O (1979) Preparation and properties of a standardized lipopolysaccharide from salmonella abortus equi (Novo-Pyrexal). Zentralbl Bakteriol (Orig A) 243:226–244

    CAS  Google Scholar 

  36. Balkow S, Kersten A, Tran TT, Stehle T, Grosse P, Museteanu C, Utermohlen O, Pircher H, von Weizsacker F, Wallich R, Mullbacher A, Simon MM (2001) Concerted action of the FasL/Fas and perforin/granzyme A and B pathways is mandatory for the development of early viral hepatitis but not for recovery from viral infection. J Virol 75:8781–8791

    Article  PubMed  CAS  Google Scholar 

  37. Grossman WJ, Kimata JT, Wong FH, Zutter M, Ley TJ, Ratner L (1995) Development of leukemia in mice transgenic for the tax gene of human T-cell leukemia virus type I. Proc Natl Acad Sci USA 92:1057–1061

    Article  PubMed  CAS  Google Scholar 

  38. Loeher J, Gossman J, Kratzberg T, Lehmann-Grobe F (1994) Murine hepatitis caused by lymphocytic choriomeningitis virus. I. The hepatic lesions. Lab Invest 70:263–278

    Google Scholar 

  39. Battegay M, Cooper S, Althage A, Banziger J, Hengartner H, Zinkernagel RM (1991) Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J Virol Methods 33:191–198

    Article  PubMed  CAS  Google Scholar 

  40. Aggarwal BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ, Bringman TS, Nedwin GE, Goeddel DV, Harkins RN (1985) Human tumor necrosis factor. Production, purification, and characterization. J Biol Chem 260:2345–2354

    PubMed  CAS  Google Scholar 

  41. Slade SJ, Langhorne J (1989) Production of interferon-gamma during infection of mice with Plasmodium chabaudi chabaudi. Immunobiology 179:353–365

    PubMed  CAS  Google Scholar 

  42. Ou R, Zhou S, Huang L, Moskophidis D (2001) Critical role for alpha/beta and gamma interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J Virol 75:8407–8423

    Article  PubMed  CAS  Google Scholar 

  43. Biron CA, Nguyen KB, Pien GC (2002) Innate immune responses to LCMV infections: natural killer cells and cytokines. Curr Top Microbiol Immunol 263:7–27

    PubMed  CAS  Google Scholar 

  44. Cousens LP, Orange JS, Su HC, Biron CA (1997) Interferon-alpha/beta inhibition of interleukin 12 and interferon-gamma production in vitro and endogenously during viral infection. Proc Natl Acad Sci USA 94:634–639

    Article  PubMed  CAS  Google Scholar 

  45. Nguyen KB, Cousens LP, Doughty LA, Pien GC, Durbin JE, Biron CA (2000) Interferon alpha/beta-mediated inhibition and promotion of interferon gamma: STAT1 resolves a paradox. Nat Immunol 1:70–76

    Article  PubMed  CAS  Google Scholar 

  46. Cousens LP, Peterson R, Hsu S, Dorner A, Altman JD, Ahmed R, Biron CA (1999) Two roads diverged: interferon alpha/beta- and interleukin 12-mediated pathways in promoting T cell interferon gamma responses during viral infection. J Exp Med 189:1315–1328

    Article  PubMed  CAS  Google Scholar 

  47. Conlan JW, North RJ (1992) Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes, Francisella tularensis, and Salmonella typhimurium involves lysis of infected hepatocytes by leukocytes. Infect Immun 60:5164–5171

    PubMed  CAS  Google Scholar 

  48. Lopez S, Marco AJ, Prats N, Czuprynski CJ (2000) Critical role of neutrophils in eliminating Listeria monocytogenes from the central nervous system during experimental murine listeriosis. Infect Immun 68:4789–4791

    Article  PubMed  CAS  Google Scholar 

  49. Seiler P, Aichele P, Raupach B, Odermatt B, Steinhoff U, Kaufmann SH (2000) Rapid neutrophil response controls fast-replicating intracellular bacteria but not slow-replicating Mycobacterium tuberculosis. J Infect Dis 181:671–680

    Article  PubMed  CAS  Google Scholar 

  50. Mayer-Scholl A, Averhoff P, Zychlinsky A (2004) How do neutrophils and pathogens interact? Curr Opin Microbiol 7:62–66

    Article  PubMed  CAS  Google Scholar 

  51. Yang KK, Dorner BG, Merkel U, Ryffel B, Schutt C, Golenbock D, Freeman MW, Jack RS (2002) Neutrophil influx in response to a peritoneal infection with Salmonella is delayed in lipopolysaccharide-binding protein or CD14-deficient mice. J Immunol 169:4475–4480

    PubMed  CAS  Google Scholar 

  52. Hashimoto K (1986) Experimental analysis of concurrent viral and bacterial infection in the mouse. Tokai J Exp Clin Med 11(suppl):59–63

    PubMed  Google Scholar 

  53. Jakab GJ, Dick EC (1973) Synergistic effect in viral–bacterial infection: combined infection of the murine respiratory tract with Sendai virus and Pasteurella pneumotropica. Infect Immun 8:762–768

    PubMed  CAS  Google Scholar 

  54. Sellers TF Jr., Schulman J, Bouvier C, Mc CR, Kilbourne ED (1961) The influence of influenza virus infection on exogenous staphylococcal and endogenous murine bacterial infection of the bronchopulmonary tissues of mice. J Exp Med 114:237–256

    Article  PubMed  Google Scholar 

  55. Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Aguet M (1993) Immune response in mice that lack the interferon-gamma receptor. Science 259:1742–1745

    Article  PubMed  CAS  Google Scholar 

  56. Rothe J, Lesslauer W, Lotscher H, Lang Y, Koebel P, Kontgen F, Althage A, Zinkernagel R, Steinmetz M, Bluethmann H (1993) Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364:798–802

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The investigation was supported in part by Deutsche Forschungsgemeinschaft-SPP 1110 (Angeborene Immunität), project Fr 448/4–3. We are indebted to J. Ippisch, N. Goos, H. Stübig and H. Kochanowski for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Freudenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gumenscheimer, M., Balkow, S., Simon, M.M. et al. Stage of primary infection with lymphocytic choriomeningitis virus determines predisposition or resistance of mice to secondary bacterial infections. Med Microbiol Immunol 196, 79–88 (2007). https://doi.org/10.1007/s00430-006-0030-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-006-0030-1

Keywords

Navigation