Skip to main content

Advertisement

Log in

The role of feedback projections in feature tuning and neuronal excitability in the early primate visual system

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

A general assumption in visual neuroscience is that basic receptive field properties such as orientation and direction selectivity are constructed within intrinsic neuronal circuits and feedforward projections. In addition, it is assumed that general neuronal excitability and responsiveness in early visual areas is to a great extent independent of feedback input originating in areas higher in the stream. Here, we review the contribution of feedback projections from MT, V4 and pulvinar to the receptive field properties of V2 neurons in the anesthetized and paralyzed monkey. Importantly, our results contradict both of these assumptions. We separately inactivated each of these three brain regions using GABA pressure injections, while simultaneously recording V2 single unit activity before and hours after inactivation. Recordings and GABA injections were carried out in topographically corresponding regions of the visual field. We outline the changes in V2 activity, responsiveness and receptive field properties for early, mid and late post-injection phases. Immediately after injection, V2 activity is globally suppressed. Subsequently, there is an increase in stimulus-driven relative to spontaneous neuronal activity, which improves the signal-to-noise coding for the oriented moving bars. Notably, V2 tuning properties change substantially relative to its pre-injection selectivity profile. The resulting increase or decrease in selectivity could not be readily predicted based on the selectivity profile of the inactivated site. Finally, V2 activity rebounds before returning to it pre-injection profile Our results show that feedback projections profoundly impact neuronal circuits in early visual areas, and may have been heretofore largely underestimated in their physiological role.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams MM, Webster MJ, Gattass R, Hof PR, Ungerleider LG (2000) Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J Comp Neurol 419:377–393

    Article  CAS  PubMed  Google Scholar 

  • Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130

    Article  CAS  PubMed  Google Scholar 

  • Allman JM, Kaas JH (1974a) The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. Brain Res 76:247–265

    Article  CAS  PubMed  Google Scholar 

  • Allman JM, Kaas JH (1974b) A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). Brain Res 81:199–213

    Article  CAS  PubMed  Google Scholar 

  • Alonso JM, Cudeiro J, Perez R, Gonzalez F, Acuna C (1993) Influence of layer V of area 18 of the cat visual cortex on responses of cells in layer V of area 17 to stimuli of high velocity. Exp Brain Res 93:363–366

    Article  CAS  PubMed  Google Scholar 

  • Amorim AK, Picanco-Diniz CW (1996) Morphometric analysis of intrinsic axon terminals of Cebus monkey area 17. Braz J Med Biol Res 29:1363–1368

    CAS  PubMed  Google Scholar 

  • Amorim AK, Picanco-Diniz CW (1997) Horizontal projections of area 17 in Cebus monkeys: metric features, and modular and laminar distribution. Braz J Med Biol Res 30:1489–1501

    Article  CAS  PubMed  Google Scholar 

  • Amorim AK, Picanço-Diniz CW (1998) Intrinsic projections of Cebus-monkey area 17: cell morphology and axon terminals. Rev Bras Biol, Sup 1(2):209–219

    Google Scholar 

  • Angelucci A, Levitt JB, Walton EJ, Hupé JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borra E, Rockland KS (2011) Projections to early visual areas v1 and v2 in the calcarine fissure from parietal association areas in the macaque. Front Neuroanat 5:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12:4745–4765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullier J (2001) Feedback connections and conscious vision. Trends Cogn Sci 5:369–370

    Article  CAS  PubMed  Google Scholar 

  • Casanova C, Michaud Y, Morin C, McKinley PA, Molotchnikoff S (1992) Visual responsiveness and direction selectivity of cells in area 18 during local reversible inactivation of area 17 in cats. Visual Neurosci 9:581–593

    Article  CAS  Google Scholar 

  • Crook JM, Kisvarday ZF, Eysel UT (1996) GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): effects on direction selectivity. J Neurophysiol 75:2071–2088

    Article  CAS  PubMed  Google Scholar 

  • Crook JM, Kisvarday ZF, Eysel UT (1997) GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and direction selectivity. Vis Neurosci 14:141–158

    Article  CAS  PubMed  Google Scholar 

  • Crook JM, Kisvarday ZF, Eysel UT (1998) Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. Eur J Neurosci 10:2056–2075

    Article  CAS  PubMed  Google Scholar 

  • Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159:203–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Mello FG (1984) GABA-mediated control of glutamate decarboxylase (GAD) in cell aggregate culture of chick embryo retina. Brain Res 316:7–13

    Article  PubMed  Google Scholar 

  • Dubner R, Zeki SM (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res 35:528–532

    Article  CAS  PubMed  Google Scholar 

  • Fiorani M, Gattass R, Rosa MG, Sousa AP (1989) Visual area MT in the Cebus monkey: location, visuotopic organization, and variability. J Comp Neurol 287:98–118

    Article  PubMed  Google Scholar 

  • Fiorani M, Azzi JCB, Soares JGM, Gattass R (2014) Automatic mapping of visual cortex receptive fields: a fast and precise algorithm. J Neurosci Methods 221:112–126

    Article  PubMed  Google Scholar 

  • Galuske RA, Schmidt KE, Goebel R, Lomber SG, Payne BR (2002) The role of feedback in shaping neural representations in cat visual cortex. Proc Natl Acad Sci U S A 99:17083–17088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattass R, Gross CG (1981) Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol 46:621–638

    Article  CAS  PubMed  Google Scholar 

  • Gattass R, Oswaldo-Cruz E, Sousa AP (1978a) Visuotopic organization of the Cebus pulvinar: a double representation the contralateral hemifield. Brain Res 152:1–16

    Article  CAS  PubMed  Google Scholar 

  • Gattass R, Sousa AP, Oswaldo-Cruz E (1978b) Single unit response types in the pulvinar of the Cebus monkey to multisensory stimulation. Brain Res 158:75–87

    Article  CAS  PubMed  Google Scholar 

  • Gattass R, Oswaldo-Cruz E, Sousa AP (1979) Visual receptive fields of units in the pulvinar of cebus monkey. Brain Res 160:413–430

    Article  CAS  PubMed  Google Scholar 

  • Gattass R, Sousa AP, Rosa MG (1987) Visual topography of V1 in the Cebus monkey. J Comp Neurol 259:529–548

    Article  CAS  PubMed  Google Scholar 

  • Gattass R, Sousa AP, Gross CG (1988) Visuotopic organization and extent of V3 and V4 of the macaque. J Neurosci 8:1831–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattass R, Rosa MG, Sousa AP, Piñon MCG, Fiorani M, Neuenschwander S (1990) Cortical streams of visual information processing in primates. Braz J Med Biol Res 23(375):393

    Google Scholar 

  • Gattass R, Nascimento-Silva S, Soares JG et al (2005) Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics. Philos Trans R Soc Lond B Biol Sci 360:709–731

    Article  PubMed  PubMed Central  Google Scholar 

  • Gattass R, Lima B, Soares JGM, Ungerleider LG (2015) Controversies about the visual áreas at the anterior border of área V2 in primates. Vis Neurosci 32:e019

    Article  PubMed  PubMed Central  Google Scholar 

  • Gattass R, Soares JGM, Lima B (2018) The pulvinar thalamic nucleus of non-human primates: architectonic and functional subdivisions. Springer, Adv Anat Embryol Cell Biol

    Book  Google Scholar 

  • Girard P, Salin PA, Bullier J (1992) Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. J Neurophysiol 67:1437–1446

    Article  CAS  PubMed  Google Scholar 

  • Hata Y, Tsumoto T, Sato H, Hagihara K, Tamura H (1988) Inhibition contributes to orientation selectivity in visual cortex of cat. Nature 335:815–817

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Chen X, Shou T (2004) Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat. Brain Res 998:194–201

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Livingstone MS (1987) Segregation of form, color, and stereopsis in primate area 18. J Neurosci 7:3378–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hupé JM (1995) Role des connexions en feedback dans le cortex visuel du singe macaque mise au point d`une technique d`inativation locale. Université Claude Bernar Lyon I, Tese, p 35

    Google Scholar 

  • Hupé JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787

    Article  PubMed  Google Scholar 

  • Hupé JM, Chouvet G, Bullier J (1999) Spatial and temporal parameters of cortical inactivation by GABA. J Neurosci Methods 86:129–143

    Article  PubMed  Google Scholar 

  • Hupé JM, James AC, Girard P, Bullier J (2001) Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. J Neurophysiol 85:146–163

    Article  PubMed  Google Scholar 

  • Jansen-Amorim AK, Lima B, Fiorani M, Gattass R (2011) GABA inactivation of visual area MT modifies the responsiveness and direction selectivity of V2 neurons in Cebus monkeys. Vis Neurosci 28:513–527

    Article  PubMed  Google Scholar 

  • Jansen-Amorim AK, Fiorani M, Gattass R (2012) GABA inactivation of area V4 changes receptivefield properties of V2 neurons in Cebus monkeys. Exp Neurol 235:553–562

    Article  CAS  PubMed  Google Scholar 

  • Jansen-Amorim AK, Fiorani M, Gattass R (2013) GABA-induced Inactivation of Cebus apella V2 Neurons: effects on orientation tuning and direction selectivity. Braz J Med Biol Res 46:589–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RR, Burkhalter A (1996) Microcircuitry of forward and feedback connections within rat visual cortex. J Comp Neurol 368:383–398

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Collins CE (2001) The organization of sensory cortex. Curr Opin Neurobiol 11:498–504

    Article  CAS  PubMed  Google Scholar 

  • Lamme VA, Super H, Spekreijse H (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8:529–535

    Article  CAS  PubMed  Google Scholar 

  • Martin JH, Cooper SE, Ghez C (1993) Differential effects of local inactivation within motor cortex and red nucleus on performance of an elbow task in the cat. Exp Brain Res 94:418–428

    Article  CAS  PubMed  Google Scholar 

  • Mignard M, Malpeli JG (1991) Paths of information flow through visual cortex. Science 251:12491251

    Article  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    Article  CAS  PubMed  Google Scholar 

  • Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733–7741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murthy A, Humphrey AL (1999) Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17. J Neurophysiol 81:1212–1224

    Article  CAS  PubMed  Google Scholar 

  • Nascimento-Silva S, Pinõn C, Soares JG, Gattass R (2014) Feedforward and feedback connections and their relation to the cytox modules of V2 in Cebus monkeys. J Comp Neurol 522:3091–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piñon MC, Gattass R, Sousa AP (1998) Area V4 in Cebus monkey: extent and visuotopic organization. Cereb Cortex 8:685–701

    Article  PubMed  Google Scholar 

  • Rockland KS, Knutson T (2000) Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J Comp Neurol 425:345–368

    Article  CAS  PubMed  Google Scholar 

  • Rockland KS, Saleem KS, Tanaka K (1994) Divergent feedback connections from areas V4 and TEO in the macaque. Vis Neurosci 11:579–600

    Article  CAS  PubMed  Google Scholar 

  • Rodman HR, Gross CG, Albright TD (1989) Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. J Neurosci 9:2033–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roerig B, Kao JP (1999) Organization of intracortical circuits in relation to direction preference maps in ferret visual cortex. J Neurosci 19:1–5

    Article  Google Scholar 

  • Rosa MG, Sousa AP, Gattass R (1988) Representation of the visual field in the second visual area in the Cebus monkey. J Comp Neurol 275:326–345

    Article  CAS  PubMed  Google Scholar 

  • Rosa MG, Soares JGM, Fiorani M Jr, Gattass R (1993) Cortical Afferents of Visual Area MT in the Cebus Monkey: possible homologies between new and old-world monkeys. Vis Neurosci 10:827–855

    Article  CAS  PubMed  Google Scholar 

  • Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75:107–154

    Article  CAS  PubMed  Google Scholar 

  • Sandell JH, Schiller PH (1982) Effect of cooling area 18 on striate cortex cells in the squirrel monkey. J Neurophysiol 48:38–48

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Katsuyama N, Tamura H, Hata Y, Tsumoto T (1995) Mechanisms underlying direction selectivity of neurons in the primary visual cortex of the macaque. J Neurophysiol 74:1382–1394

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Katsuyama N, Tamura H, Hata Y, Tsumoto T (1996) Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. J Physiol 494:757–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillito AM (1975a) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol 250:305–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillito AM (1975b) The effectiveness of bicuculline as an antagonist of GABA and visually evoked inhibition in the cat’s striate cortex. J Physiol 250:287–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillito AM (1977) Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat’s visual cortex. J Physiol 271:699–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillito AM, Kemp JA, Milson JA, Berardi N (1980a) A re-evaluation of the mechanisms underlying simple cell orientation selectivity. Brain Res 194:517–520

    Article  CAS  PubMed  Google Scholar 

  • Sillito AM, Kemp JA, Patel H (1980b) Inhibitory interactions contributing to the ocular dominance of monocularly dominated cells in the normal cat striate cortex. Exp Brain Res 41:1–10

    Article  CAS  PubMed  Google Scholar 

  • Sincich LC, Park KF, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Soares JGM, Gattass R, Sousa APB, Rosa MGP, Fiorani M, Brandão BL (2001) Connectional and neurochemical subdivisions of the pulvinar in Cebus monkeys. Vis Neurosci 18:25–41

    Article  CAS  PubMed  Google Scholar 

  • Soares JG, Diogo AC, Fiorani M, Sousa AP, Gattass R (2004) Effects of inactivation of the lateral pulvinar on response properties of second visual area cells in Cebus monkeys. Clin Exp Pharmacol Physiol 31:580–590

    Article  CAS  PubMed  Google Scholar 

  • Sousa AP, Piñon MC, Gattass R, Rosa MG (1991) Topographic organization of cortical input to striate cortex in the Cebus monkey: a fluorescent tracer study. J Comp Neurol 308:665–682

    Article  CAS  PubMed  Google Scholar 

  • Tanigawa H, Lu HD, Roe AW (2010) Functional organization for color and orientation in macaque V4. Nat Neurosci 13:1542–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele A, Distler C, Korbmacher H, Hoffmann KP (2004) Contribution of inhibitory mechanisms to direction selectivity and response normalization in macaque middle temporal area. Proc Natl Acad Sci U S A 101:9810–9815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele A, Herrero JL, Distler C, Hoffmann KP (2012) Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area. J Neurosci 32:16602–16615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tigges J, Tigges M, Anschel S, Cross NA, Letbetter WD, McBride RL (1981) Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri). J Comp Neurol 202:539–560

    Article  CAS  PubMed  Google Scholar 

  • Tsumoto T, Eckart W, Creutzfeldt OD (1979) Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition. Exp Brain Res 34:351–363

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider LG, Galkin TW, Desimone R, Gattass R (2008) Cortical connections of area V4 in the macaque. Cereb Cortex 18:477–499

    Article  PubMed  Google Scholar 

  • Vidyasagar TR, Eysel UT (2015) Origins of feature selectivities and maps in the mammalian primary visual cortex. Trends Neurosci 38:475–485

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Waleszczyk WJ, Burke W, Dreher B (2000) Modulatory influence of feedback projections from area 21a on neuronal activities in striate cortex of the cat. Cereb Cortex 10:1217–1232

    Article  CAS  PubMed  Google Scholar 

  • Zeki SM (1978) Functional specialization in the visual cortex of the rhesus monkey. Nature 274:423–428

    Article  CAS  PubMed  Google Scholar 

  • Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335:311–317

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants of the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), FAPERJ (FAPERJ E-26/210.917/2016—PRONEX), and FINEP (0354/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gattass.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia, A.R.A., Amorim, A.K.J., Soares, J.G.M. et al. The role of feedback projections in feature tuning and neuronal excitability in the early primate visual system. Brain Struct Funct 226, 2881–2895 (2021). https://doi.org/10.1007/s00429-021-02311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02311-x

Keywords

Navigation