Skip to main content

Advertisement

Log in

Sources and lesion-induced changes of VEGF expression in brainstem motoneurons

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration compared to other cranial motoneurons, as seen in amyotrophic lateral sclerosis (ALS). The overexpression of vascular endothelial growth factor (VEGF) is involved in motoneuronal protection. As previously shown, motoneurons innervating extraocular muscles present a higher amount of VEGF and its receptor Flk-1 compared to facial or hypoglossal motoneurons. Therefore, we aimed to study the possible sources of VEGF to brainstem motoneurons, such as glial cells and target muscles. We also studied the regulation of VEGF in response to axotomy in ocular, facial, and hypoglossal motor nuclei. Basal VEGF expression in astrocytes and microglial cells of the cranial motor nuclei was low. Although the presence of VEGF in the different target muscles for brainstem motoneurons was similar, the presynaptic element of the ocular neuromuscular junction showed higher amounts of Flk-1, which could result in greater efficiency in the capture of the factor by oculomotor neurons. Seven days after axotomy, a clear glial reaction was observed in all the brainstem nuclei, but the levels of the neurotrophic factor remained low in glial cells. Only the injured motoneurons of the oculomotor system showed an increase in VEGF and Flk-1, but such an increase was not detected in axotomized facial or hypoglossal motoneurons. Taken together, our findings suggest that the ocular motoneurons themselves upregulate VEGF expression in response to lesion. In conclusion, the low VEGF expression observed in glial cells suggests that these cells are not the main source of VEGF for brainstem motoneurons. Therefore, the higher VEGF expression observed in motoneurons innervating extraocular muscles is likely due either to the fact that this factor is more avidly taken up from the target muscles, in basal conditions, or is produced by these motoneurons themselves, and acts in an autocrine manner after axotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acosta L, Morcuende S, Silva-Hucha S, Pastor AM, de la Cruz RR (2018) Vascular endothelial growth factor (VEGF) prevents the downregulation of the cholinergic phenotype in axotomized motoneurons of the adult rat. Front Mol Neurosci 11:241

    PubMed  PubMed Central  Google Scholar 

  • Alexianu ME, Ho B-KB-KK, Mohamed AH, La Bella V, Smith RG, Appel SH (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 36:846–858

    CAS  PubMed  Google Scholar 

  • Arcondéguy T, Lacazette E, Millevoi S, Prats H, Touriol C (2013) VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res 41:7997–8010

    PubMed  PubMed Central  Google Scholar 

  • Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454–2468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azzouz M, Hottinger A, Paterna JC, Zurn AD, Aebischer P, Büeler H (2000) Increased motoneuron survival and improved neuromuscular function in transgenic ALS mice after intraspinal injection of an adeno-associated virus encoding Bcl-2. Hum Mol Genet 9:803–811

    CAS  PubMed  Google Scholar 

  • Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417

    CAS  PubMed  Google Scholar 

  • Bartholdi D, Rubin BP, Schwab ME (1997) VEGF mRNA induction correlates with changes in the vascular architecture upon spinal cord damage in the rat. Eur J Neurosci 9:2549–2560

    CAS  PubMed  Google Scholar 

  • Benítez-Temiño B, Davis-López de Carrizosa MA, Morcuende S, Matarredona ER, de la Cruz RR, Pastor AM (2016) Functional diversity of neurotrophin actions on the oculomotor system. Int J Mol Sci 17:2016

    PubMed Central  Google Scholar 

  • Bogaert E, Van Damme P, Poesen K, Dhondt J, Hersmus N, Kiraly D, Scheveneels W, Robberecht W, Van Den Bosch L (2010) VEGF protects motor neurons against excitotoxicity by upregulation of GluR2. Neurobiol Aging 31:2185–2191

    CAS  PubMed  Google Scholar 

  • Bogaert E, Van Damme P, Van Den Bosch L, Robberecht W (2006) Vascular endothelial growth factor in amyotrophic lateral sclerosis and other neurodegenerative diseases. Muscle Nerve 34:391–405

    CAS  PubMed  Google Scholar 

  • Brockington A, Ning K, Heath PR, Wood E, Kirby J, Fusi N, Lawrence N, Wharton SB, Ince PG, Shaw PJ (2013) Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol 125:95–109

    CAS  PubMed  Google Scholar 

  • Büttner U, Büttner-Ennever JA (2006) Present concepts of oculomotor organization. Prog Brain Res 151:1–42

    PubMed  Google Scholar 

  • Calvo PM, de la Cruz RR, Pastor AM (2018a) Synaptic loss and firing alterations in Axotomized Motoneurons are restored by vascular endothelial growth factor (VEGF) and VEGF-B. Exp Neurol 304:67–81

    CAS  PubMed  Google Scholar 

  • Calvo PM, Pastor AM, de la Cruz RR (2018b) Vascular endothelial growth factor: an essential neurotrophic factor for motoneurons? Neural Regen Res 13:1181–1182

    PubMed  PubMed Central  Google Scholar 

  • Cárdenas-Rivera A, Campero-Romero AN, Heras-Romero Y, Penagos-Puig A, Rincón-Heredia R, Tovar-y-Romo LB (2019) Early post-stroke activation of vascular endothelial growth factor receptor 2 hinders the receptor 1-dependent neuroprotection afforded by the endogenous ligand. Front Cell Neurosci 13:270

    PubMed  PubMed Central  Google Scholar 

  • Castañeda-Cabral JL, Beas-Zarate C, Gudiño-Cabrera G, Ureña-Guerrero ME (2017) Glutamate neonatal excitotoxicity modifies VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 protein expression profiles during postnatal development of the cerebral cortex and hippocampus of male rats. J Mol Neurosci 63:17–27

    PubMed  Google Scholar 

  • Croll SD, Goodman JH, Scharfman HE (2004) Vascular endothelial growth factor (VEGF) in seizures: a double-edged sword. Adv Exp Med Biol 548:57–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis-López de Carrizosa MA, Morado-Díaz CJ, Morcuende S, de la Cruz RR, Pastor AM (2010) Nerve growth factor regulates the firing patterns and synaptic composition of motoneurons. J Neurosci 30:8308–8319

    PubMed  PubMed Central  Google Scholar 

  • Davis-López de Carrizosa MA, Morado-Díaz CJ, Tena JJ, Benítez-Temiño B, Pecero ML, Morcuende S, de la Cruz RR, Pastor AM (2009) Complementary actions of BDNF and neurotrophin-3 on the firing patterns and synaptic composition of motoneurons. J Neurosci 29:575–587

    PubMed  Google Scholar 

  • Devos D, Moreau C, Lassalle P, Perez T, De Seze J, Brunaud-Danel V, Destée A, Tonnel AB, Just N (2004) Low levels of the vascular endothelial growth factor in CSF from early ALS patients. Neurology 62:2127–2129

    CAS  PubMed  Google Scholar 

  • Gould TW, Oppenheim RW (2011) Motor neuron trophic factors: therapeutic use in ALS? Brain Res Rev 67:1–39

    CAS  PubMed  Google Scholar 

  • Guy R, Grynspan F, Ben-Zur T, Panski A, Lamdan R, Danon U, Yaffe D (2019) Human muscle progenitor cells overexpressing neurotrophic factors improve neuronal regeneration in a sciatic nerve injury mouse model. Front Neurosci 13:151

    PubMed  PubMed Central  Google Scholar 

  • Haenggeli C, Kato AC (2002) Differential vulnerability of cranial motoneurons in mouse models with motor neuron degeneration. Neurosci Lett 335:39–43

    CAS  PubMed  Google Scholar 

  • Harandi VM, Gaied ARN, Brännström T, Pedrosa Domellöf F, Liu J-X (2016) Unchanged neurotrophic factors and their receptors correlate with sparing in extraocular muscles in amyotrophic lateral sclerosis. Invest Ophthalmol Vis Sci 57:6831–6842

    CAS  PubMed  Google Scholar 

  • Hoier B, Hellsten Y (2014) Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation 21:301–314

    CAS  PubMed  Google Scholar 

  • Ijichi A, Sakuma S, Tofilon PJ (1995) Hypoxia-induced vascular endothelial growth factor expression in normal rat astrocyte cultures. Glia 14:87–93

    CAS  PubMed  Google Scholar 

  • Kobayashi NR, Bedard AM, Hincke MT, Tetzlaff W (1996) Increased expression of BDNF and trkB mRNA in rat facial motoneurons after axotomy. Eur J Neurosci 8:1018–1029

    CAS  PubMed  Google Scholar 

  • Koliatsos VE, Crawford TO, Price DL (1991) Axotomy induces nerve growth factor receptor immunoreactivity in spinal motor neurons. Brain Res 549:297–304

    CAS  PubMed  Google Scholar 

  • Krakora D, Mulcrone P, Meyer M, Lewis C, Bernau K, Gowing G, Zimprich C, Aebischer P, Svendsen CN, Suzuki M (2013) Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther 21:1602–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krum JM, Rosenstein JM (1998) VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS. Exp Neurol 154:57–65

    CAS  PubMed  Google Scholar 

  • Lambrechts D et al (2003) VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 34:383–394

    CAS  PubMed  Google Scholar 

  • Lange C, Storkebaum E, Ruiz De Almodóvar C, Dewerchin M, Carmeliet P (2016) Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol 12:439–454

    CAS  PubMed  Google Scholar 

  • Lennmyr F, Ata KA, Funa K, Olsoon Y, Terént A (1998) Expression of Vascular Endothelial Growth Factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol 57:874–882

    CAS  PubMed  Google Scholar 

  • Li B, Xu W, Luo C, Gozal D, Liu R (2003) VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death. Mol Brain Res 111:155–164

    CAS  PubMed  Google Scholar 

  • Li YN, Pan R, Qin XJ, Yang WL, Qi Z, Liu W, Liu KJ (2014) Ischemic neurons activate astrocytes to disrupt endothelial barrier via increasing VEGF expression. J Neurochem 129:120–129

    CAS  PubMed  Google Scholar 

  • Lladó J, Tolosa L, Olmos G (2013) Cellular and molecular mechanisms involved in the neuroprotective effects of VEGF on motoneurons. Front Cell Neurosci 7:181

    PubMed  PubMed Central  Google Scholar 

  • Lunn JS, Sakowski SA, Kim B, Rosenberg AA, Feldman EL (2009) Vascular endothelial growth factor prevents G93A-SOD1-induced motor neuron degeneration. Dev Neurobiol 69:871–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCloskey DP, Hintz TM, Scharfman HE (2008) Modulation of vascular endothelial growth factor (VEGF) expression in motor neurons and its electrophysiological effects. Brain Res Bull 76:36–44

    CAS  PubMed  Google Scholar 

  • Medina L, Figueredo-Cardenas G, Rothstein JD, Reiner A (1996) Differential abundance of glutamate transporter subtypes in amyotrophic lateral sclerosis (ALS)-vulnerable versus ALS-resistant brain stem motor cell groups. Exp Neurol 142:287–295

    CAS  PubMed  Google Scholar 

  • Morcuende S, Benítez-Temiño B, Pecero ML, Pastor AM, de la Cruz RR (2005) Abducens internuclear neurons depend on their target motoneurons for survival during early postnatal development. Exp Neurol 195:244–256

    CAS  PubMed  Google Scholar 

  • Morcuende S, Matarredona ER, Benítez-Temiño B, Muñoz-Hernández R, Pastor AM, De la Cruz RR, Pastor ÁM, De la Cruz RR (2011) Differential regulation of the expression of neurotrophin receptors in rat extraocular motoneurons after lesion. J Comp Neurol 519:2335–2352

    CAS  PubMed  Google Scholar 

  • Morcuende S, Muñoz-Hernández R, Benítez-Temiño B, Pastor AM, de la Cruz RR (2013) Neuroprotective effects of NGF, BDNF, NT-3 and GDNF on axotomized extraocular motoneurons in neonatal rats. Neuroscience 250:31–48

    CAS  PubMed  Google Scholar 

  • Murakami T, Ilieva H, Shiote M, Nagata T, Nagano I, Shoji M, Abe K (2003) Hypoxic induction of vascular endothelial growth factor is selectively impaired in mice carrying the mutant SOD1 gene. Brain Res 989:231–237

    CAS  PubMed  Google Scholar 

  • Navarro X, Vivó M, Valero-Cabré A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82:163–201

    CAS  PubMed  Google Scholar 

  • Nicoletti JN, Shah SK, McCloskey DP, Goodman JH, Elkady A, Atassi H, Hylton D, Rudge JS, Scharfman HE, Croll SD (2008) Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience 151:232–241

    CAS  PubMed  Google Scholar 

  • Nimchinsky EA, Young WG, Yeung G, Shah RA, Gordon JW, Bloom FE, Morrison JH, Hof PR (2000) Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice. J Comp Neurol 416:112–125

    CAS  PubMed  Google Scholar 

  • Nordal RA, Nagy A, Pintilie M, Wong CS (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10:3342–3353

    CAS  PubMed  Google Scholar 

  • Ogunshola OO, Antic A, Donoghue MJ, Fan SY, Kim H, Stewart WB, Madri JA, Ment LR (2002) Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 277:11410–11415

    CAS  PubMed  Google Scholar 

  • Olmstead DN, Mesnard-hoaglin NA, Batka RJ, Haulcomb MM, Miller WM, Jones KJ (2015) Facial nerve axotomy in mice : a model to study motoneuron response to injury. J Vis Exp 96:1–7

    Google Scholar 

  • Oosthuyse B et al (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28:131–138

    CAS  PubMed  Google Scholar 

  • Papavassiliou E, Gogate N, Proescholdt M, Heiss JD, Walbridge S, Edwards NA, Oldfield EH, Merrill MJ (1997) Vascular endothelial growth factor (vascular permeability factor) expression in injured rat brain. J Neurosci Res 49:451–460

    CAS  PubMed  Google Scholar 

  • Plate KH, Beck H, Danner S, Allegrini PR, Wiessner C (1999) Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol 58:654–666

    CAS  PubMed  Google Scholar 

  • Pronto-Laborinho AC, Pinto S, de Carvalho M (2014) Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. Biomed Res Int 947513:1–24

    Google Scholar 

  • Purves D (1990) Body and brain: a trophic theory of neural connections. Harvard University Press, Cambridge

    Google Scholar 

  • Reiner A, Medina L, Figueredo-Cardenas G, Anfinson S (1995) Brainstem motoneuron pools that are selectively resistant in amyotrophic lateral sclerosis are preferentially enriched in parvalbumin: evidence from monkey brainstem for a calcium-mediated mechanism in sporadic ALS. Exp Neurol 131:239–250

    CAS  PubMed  Google Scholar 

  • Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P, Almodovar CRDE, Lambrechts D, Mazzone M (2009) Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 89:607–648

    CAS  PubMed  Google Scholar 

  • Sathasivam S (2008) VEGF and ALS. Neurosci Res 62:71–77

    CAS  PubMed  Google Scholar 

  • Senger D, Galli S, Dvorak A, Perruzzi C, Harvey V, Dvorak H (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    CAS  PubMed  Google Scholar 

  • Silva-Hucha S, Hernández RG, Benítez-Temiño B, Pastor AM, de la Cruz RR, Morcuende S (2017) Extraocular motoneurons of the adult rat show higher levels of vascular endothelial growth factor and its receptor Flk-1 than other cranial motoneurons. PLoS ONE 12:e0178616

    PubMed  PubMed Central  Google Scholar 

  • Sköld M, Cullheim S, Hammarberg H, Piehl F, Suneson A, Lake S, Sjögren A, Walum E, Risling M (2000) Induction of VEGF and VEGF receptors in the spinal cord after mechanical spinal injury and prostaglandin administration. Eur J Neurosci 12:3675–3686

    PubMed  Google Scholar 

  • Sköld MK, von Gertten C, Sandberg-Nordqvist A-C, Mathiesen T, Holmin S (2005) VEGF and VEGF receptor expression after experimental brain contusion in rat. J Neurotrauma 22:353–367

    PubMed  Google Scholar 

  • Sondell M, Sundler F, Kanje M (2000) Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 12:4243–4254

    CAS  PubMed  Google Scholar 

  • Storkebaum E et al (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8:85–92

    CAS  PubMed  Google Scholar 

  • Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. BioEssays 26:943–954

    CAS  PubMed  Google Scholar 

  • Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tolosa L, Mir M, Olmos G, Lladó J (2009) Vascular endothelial growth factor protects motoneurons from serum deprivation-induced cell death through phosphatidylinositol 3-kinase-mediated p38 mitogen-activated protein kinase inhibition. Neuroscience 158:1348–1355

    CAS  PubMed  Google Scholar 

  • Tonchev AB, Yamashima T, Guo J, Chaldakov GN, Takakura N (2007) Expression of angiogenic and neurotrophic factors in the progenitor cell niche of adult monkey subventricular zone. Neuroscience 144:1425–1435

    CAS  PubMed  Google Scholar 

  • Tovar-y-Romo LB, Tapia R (2012) Delayed administration of VEGF rescues spinal motor neurons from death with a short effective time frame in excitotoxic experimental models in vivo. ASN Neuro 4:121–129

    CAS  Google Scholar 

  • Van Den Bosch L, Vandenberghe W, Klaassen H, Van Houtte E, Robberecht W (2000) Ca2+-permeable AMPA receptors and selective vulnerability of motor neurons. J Neurol Sci 180:29–34

    Google Scholar 

  • Vanselow BK, Keller BU (2000) Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)-related motoneurone disease. J Physiol 525(Pt 2):433–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vlasova-St. Louis I, Bohjanen PR (2017) Post-transcriptional regulation of cytokine and growth factor signaling in cancer. Cytokine Growth Factor Rev 33:83–93

    CAS  PubMed  Google Scholar 

  • von Lewinski F, Keller BU (2005) Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci 28:494–500

    Google Scholar 

  • Wang Y, Mao XO, Xie L, Banwait S, Marti HH, Greenberg DA, Jin K (2007) Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. J Neurosci 27:304–307

    PubMed  PubMed Central  Google Scholar 

  • Zheng C, Nennesmo I, Fadeel B, Henter JI (2004) Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol 56:564–567

    CAS  PubMed  Google Scholar 

  • Zhou D, Huang X, Xie Y, Deng Z, Guo J, Huang H (2019) Astrocytes-derived VEGF exacerbates the microvascular damage of late delayed RBI. Neuroscience 408:14–21

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Confocal microscopy imaging was performed in the central research services of the Universidad de Sevilla (CITIUS). This work was supported by the Ministerio de Economía y Competitividad (Grant reference: BFU2015-64515-P and PGC2018-094654-B-100) and Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía, BIO-297, in Spain. Confocal images were performed in the Central Research Services of University of Sevilla (CITIUS). We acknowledge Dr. Paul J May from UMMC for helpful comments and editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SM, SSH, AMP, MADLC, and BBT designed the experiments. SM, SSH, BBT, GCR, MEFS, and AMP performed the experiments. SM, SSH, and BBT analyzed and processed the data. SM wrote the manuscript. SM, AMP, MADLC, and BBT proofread and edited the manuscript. All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Sara Morcuende.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was carried out in accordance with the recommendations of the University of Seville ethics committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Hucha, S., Carrero-Rojas, G., Fernández de Sevilla, M.E. et al. Sources and lesion-induced changes of VEGF expression in brainstem motoneurons. Brain Struct Funct 225, 1033–1053 (2020). https://doi.org/10.1007/s00429-020-02057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-020-02057-y

Keywords

Navigation